PRELIMINARY REPORT OF SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING EVALUATION

TODD CREEK WASTE WATER
TREATMENT PLANT – PHASE II
KANSAS CITY, MISSOURI
TSI PROJECT NUMBER 20242002.00

BURNS & McDonnell 9400 Ward Parkway Kansas City, Missouri 64114

8248 NW 101st Terrace, #5 Kansas City, Missouri 64153

May 28, 2024

May 28, 2024

Mr. Jeffrey Keller, P.E., Envision S.P. **BURNS & MCDONNELL** 9400 Ward Parkway Kansas City, MO 64114

Preliminary Report of Subsurface Exploration and Re: **Geotechnical Engineering Evaluation** Todd Creek WWTP - Phase II Kansas City, Missouri TSi Project No. 20242002.00

Dear Mr. Keller:

TSi Geotechnical, Inc. (TSi) has completed the authorized subsurface exploration and geotechnical engineering evaluation for the referenced project and is pleased to submit this preliminary report of our findings to Burns & McDonnell (B&McD). The purpose of our work was to determine subsurface conditions at specific exploration locations and to gather data on which to prepare preliminary geotechnical recommendations for the design and construction of the proposed new additions to the Todd Creek Waste Water Treatment Plant (WWTP) in Kansas City, Missouri. This report describes the exploration procedures used, exhibits the data obtained, and presents our evaluations and recommendations relative to the geotechnical engineering aspects of the project.

We appreciate the opportunity to assist you with this project. If you have any questions, or if we may be of further service to you, please call us.

BROOKE

SIDEBOTTOM

Respectfully submitted,

Buch Si

Ind I Wold

TSI GEOTECHNICAL, INC.

Brooke Sidebottom, PE

Geotechnical Project Manager

Fred H. Held, III Geotechnical Project Manager Denise B. Hervey, PE

Principal

CONTENTS

1.0 SCOPE O	F SERVICES	1
2.0 SITE ANI	D PROJECT DESCRIPTIONS	2
3.1 Fi	XPLORATION AND LABORATORY TESTINGeld Explorationaboratory Testing	3
4.1 Ge 4.2 Ge	FACE CONDITIONS eneral Geology eneralized Subsurface Profile roundwater	5
5.1 Pr 5.2 Pr 5.3 Pr 5.4 La 5.5 Pa 5.6 Se	eliminary Shallow Foundation & Ground Improvement Recommendations eliminary Deep Foundation Recommendations eliminary Deep Foundation Lateral Loads ateral Earth Pressures evement Subgrade Recommendations for New Access Roadways elismic Site Classification enterosion Potential	7 8 10 11
6.1 Su6.2 Ex6.3 Su6.4 Fi6.5 Fi	EPARATION AND EXCAVATION CONSIDERATIONS	13 13 13 14
7.0 Constr	UCTION OBSERVATION AND TESTING	15
8.0 Report	LIMITATIONS	16
Appendix A	Vicinity Map, Figure 1Site and Boring Location Plan, Figure 2	
Appendix B	Boring LogsGeneral NotesUnified Soil Classification System	
Appendix C	- Laboratory Test Results	
Appendix D	- Rock Core Photographs	

PRELIMINARY REPORT OF SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING EVALUATION TODD CREEK WWTP – PHASE II KANSAS CITY, MISSOURI

1.0 Scope of Services

This report summarizes the results of a preliminary geotechnical study performed for the proposed new additions to the Todd Creek WWTP in Kansas City, Missouri. The study was performed in general accordance with TSi's fee estimate to B&McD, dated January 10, 2024. Based on TSi's understanding of the project, the following items have been identified for inclusion in this study report:

- Subsurface conditions at the boring locations;
- Identification of the Bethany Falls Limestone Member;
- Laboratory test results;
- Influence of groundwater on the project;
- Soil strength parameters;
- Soil remediation recommendations;
- Depths to bedrock;
- Preliminary shallow and deep foundation recommendations, including LPILE parameters;
- Lateral Earth Pressures for below grade structures or walls;
- Pavement Subgrade Design Values;
- Seismic Site Classification;
- General construction considerations;
- Recommendations for fill and backfill material, placement and compaction; and,
- Recommendations for construction observation and testing.

2.0 SITE AND PROJECT DESCRIPTIONS

The following project understanding is based on discussions with B&McD and a site reconnaissance by an engineer from TSi. The proposed project includes the construction of various new structures and a new access road for the Todd Creek WWTP, as listed in Table 1 below. TSi performed a subsurface exploration in 2022 for the same project at a site approximately 0.25 miles north of this current project site. TSi understands that this new project site to the south is being considered as an alternative location for the project.

A Vicinity Map, Figure 1 in Appendix A, indicates the general project location. The Site and Boring Location Plan, Figure 2 in Appendix A, provides a more detailed plan of the project area.

The project site is currently located within an empty field previously used for farming. The general site terrain includes a quarry west of the project site, farming property which slopes from an approximately elevation of 890 feet to the west and 840 feet to the east, and Todd Creek to the east and south of the project site. The site generally drains to the east and south into Todd Creek and a tributary creek.

TABLE 1
TODD CREEK WWTP – PLANNED NEW STRUCTURES

Planned New Structure	Planned Approximate Grade, feet	Preliminary Structure Loads (psf*)	Borings within Preliminary Footprint Layout of Planned New Structures
Blower Building	856	3500	B-07
AGS Basins	856 or 851	4000	B-01, B-02, B-03, B-04
Solids Processing	861	3500	N/A
Administrative Building	861	3500	B-08
Effluent Structure	847	3000	B-06
UV Disinfection	851	3500	B-05
Headworks Building	856	4000	N/A
Main Access Road	Varies	N/A	B-09, B-10

^{*}psf-pounds per square foot.

3.0 FIELD EXPLORATION AND LABORATORY TESTING

3.1 FIELD EXPLORATION

TSi conducted a preliminary exploration program at the project site from January 31 to February 14, 2024. The exploration consisted of ten (10) soil borings, designated as Borings B-01 to B-10 which extended to depths ranging from approximately 5.1 feet to 250 feet below the existing ground surface. The approximate locations of the borings are indicated on the Site and Boring Location Plan, Figure 2 in Appendix A. The logs from this exploration are included in Appendix B. The boring locations were selected by B&McD and marked in the field by TSi using a handheld GPS device. The elevations listed on the boring logs were estimated using Google Earth Data and should be considered approximate.

The borings were drilled using a CME-550x all-terrain drill rig to advance hollow stem or flight auger drilling tools. Split-spoon samples were recovered from each boring while performing standard penetration tests (SPT). Split-spoon samples were recovered using a 2-inch outside-diameter, split-barrel sampler, driven by an automatic hammer, in accordance with ASTM D 1586. The split-spoon samples were placed in plastic bags for later testing in the laboratory. Three-inch diameter Shelby tube samples were also obtained in accordance with ASTM D 1587. The Shelby tube samples were preserved by sealing the entire sample in the tube. Borings were backfilled with bentonite grout.

Four borings (B-02, B-03, B-06, and B-08) were advanced about 20 to 25 feet below auger refusal depths into the underlying limestone and shale bedrock. Boring B-07 was advanced over 220 feet into bedrock to a total depth of 250 feet in an effort to identify the Bethany Falls Limestone Member. The bedrock was sampled using N series diamond-bit rock coring methods. The rock cores recovered were placed in boxes and taken to the laboratory for examination and testing. Percent recovery and Rock Quality Designation (RQD) values were calculated for each rock core sample and are noted on the boring logs. The RQD is the percentage of the total length of rock cored that consists of sound pieces that are a minimum of 4.0 inches in length. The RQD is a general indication of the integrity of the in-situ rock mass. Based on RQD, rock quality can be described as excellent (90 to 100), good (75 to 90), fair (50 to 75), poor (25 to 50), or very poor (0 to 25). TSi photographed the rock core samples and have included the photographs in Appendix D of this report.

The results of the field tests and measurements were recorded on field logs and appropriate data sheets by a geotechnical specialist. Those data sheets and logs contain information concerning the exploration methods, samples attempted and recovered, indications of the presence of various subsurface materials, and the observation of groundwater if encountered. The field logs and data sheets contain the field representative's interpretations of the conditions between samples, based on the performance of the exploration equipment and the cuttings brought to the surface. The final logs included in this report were based on the field logs, modified as appropriate based on the results of laboratory testing of soil samples.

3.2 Laboratory Testing

A laboratory testing program was conducted by TSi to determine selected engineering properties of the obtained soil samples. The following laboratory tests were performed on select samples recovered from the borings according to applicable ASTM standards:

- Visual descriptions by color and texture;
- Natural moisture content;
- Atterberg limits of selected cohesive samples;
- Unit weight of selected cohesive samples;
- Unconfined compression of selected cohesive samples;
- Grain size analysis of selected samples;
- Minus #200 sieve wash of selected samples;
- Corrosivity suite; and,
- Compressive strength of intact rock core samples.

The results of most of the laboratory tests are summarized on the boring logs in Appendix B. Results of the grain size analysis, corrosivity suite, and rock core compressive strength tests are included in Appendix C. The analysis and conclusions contained in this report are based on field and laboratory test results and on the interpretations of the subsurface conditions as reported on the logs. Only data pertinent to the objectives of this report have been included on the logs; therefore, these logs should not be used for other purposes.

4.0 Subsurface Conditions

Details of the subsurface conditions encountered at the boring locations are shown on the boring logs in Appendix B. The general subsurface conditions encountered and their pertinent engineering characteristics are described in the following paragraphs. Conditions represented by the borings should be considered applicable only at those locations on the dates shown; the reported conditions may be different at other locations or at other times.

4.1 GENERAL GEOLOGY

The surficial geologic deposit of the general project area is made up with soil named F-Glacial Drift consisting of nonstratified, generally heterogeneous mixture of clay, silt, sand, gravel, cobbles, and boulders deposited directly by glacial ice. The bedrock in the area is associated with Lansing Group of late Pennsylvanian-Upper Series- Missouri Stage. This bedrock formation is up to 60 feet thick which consists of primarily cyclic deposits of shale, limestone with minor sandstone layers. The underlying Kansas City Group bedrock generally consists of alternating layers of limestone and shale. Potential geologic hazards such as liquefiable soils, collapsible soils, faults, karst, and active mines were not encountered or discovered on or near the project site during subsurface exploration.

4.2 GENERALIZED SUBSURFACE PROFILE

The surficial materials at the boring locations generally consist of lean clays (CL, in accordance with the Unified Soil Classification System (USCS)) which contain various amounts of organics, sand, gravel, and shale fragments. Standard penetration tests (N-values) in the lean clays range from 6 blows per foot (bpf) to 50 blows for 5.5 inches of penetration. Moisture contents range from 14% to 29%. Atterberg tests performed within the lean clays result in liquid limits (LL) ranging from 33 to 47 and plasticity indexes (PI) of 16 to 25. Undrained shear strength and dry densities result at 0.35 to 1.35 tons per square foot (tsf) and 98 to 119 pounds per cubic foot (pcf), respectively. The native lean clays continue to apparent top of weathered bedrock in Borings B-03, B-04, and B-10 and to a planned termination depth of 20 feet below ground surface in Boring B-09.

In Borings B-01, B-02, B-05, B-06, B-07, and B-08, the surficial lean clays are generally underlain by sands and gravels (SC, SP, and GC, in accordance with the USCS) containing various amounts of clay. These sands and gravels continue to apparent top of weathered bedrock. N-values and moisture contents in the sands and gravels range from 8 bpf to 44 bpf and 6% to 22%, respectively.

Split spoon samples refused on the top of weathered bedrock in Borings B-02 through B-08, and Boring B-10. Standard penetration tests (N-values) and moisture contents within the upper weathered bedrock range from 50 blows for 4.5 inches of penetration to 50 blows for 0 inches of penetration and 1% to 14%, respectively.

Table 2 lists the depths and approximate elevations at which auger refusal was encountered across the site. Auger refusal was encountered on the top of weathered shale and/or limestone bedrock at depths ranging from 5.1 to 39.4 feet below the ground surface. Drilling operations were advanced below auger refusal in five of the ten borings to termination depths ranging from 35 feet to 250 feet below the ground surface. Recoveries in the limestone and shale bedrock range from 31% to 100% and rock quality designations (RQDs) range from 0% to 100%. The compressive strength of selected limestone and shale rock cores range from about 15,000 to 17,000 psi and 40 to 200 psi, respectively.

TABLE 2 **AUGER REFUSAL DEPTH AND ELEVATION**

Boring Location	Auger Refusal Depth (ft.)	Auger Refusal Elevation* (ft.)
B-01	NE	NE
B-02	20.5	830.5
B-03	12.0	828.0
B-04	15.6	829.4
B-05	24.0	829.0
B-06	16.0	831.0
B-07	29.2	828.8
B-08	39.4	830.6
B-09	NE	NE
B-10	5.1	878.9

^{*}Elevations are approximate. NE – Not Encountered.

Boring B-07 was advanced to a depth of 250 feet in an effort to identify the Bethany Falls Limestone Member. Based on geologic information published in the Stratigraphic Succession in Missouri and the depictions of the bedrock formations, it appears that the Bethany Falls Limestone Member is present in a 19-foot stratum at an elevation of about 631 to 612 in Boring B-07.

4.3 Groundwater

Groundwater was encountered in nine borings to approximate depths ranging from 5.9 to 28.5 feet below ground surface. The presence of groundwater at a particular location does not necessarily mean that groundwater will be present or absent at that location at other times. Seasonal variations and other unknown considerations could cause fluctuations in water levels and the presence of water in the soils.

5.0 Engineering Assessments and Recommendations

5.1 Preliminary Shallow Foundation & Ground Improvement Recommendations

Due to the relatively large anticipated loads given in Table 1 for the project, TSi generally does not recommend that shallow foundations be utilized bearing on native soils which have not been modified using ground improvement methods. If other, more lightly loaded, structures or retaining walls are planned to be constructed on site, then those proposed structures may be supported by shallow spread footing foundations bearing on native lean clays compacted in accordance with the recommendations provided in Section 6 of this report. Spread footings on the native lean clay soil may be designed for a net allowable bearing pressure (pressure in excess of adjacent overburden pressure) of up to 2,000 pounds per square foot (psf) for structural dead load plus maximum live load. This bearing pressure should be considered preliminary and should not be used for final design.

TSi understands that rammed aggregate pier (RAP), or geopier, ground improvement methods may be implemented for this project. These methods are typically designed and installed by a specialty contractor, who should be capable of verifying the improvement in bearing capacity and settlement characteristics, along with providing preliminary construction costs in the design phase. Because of the specialty nature of these technologies, the design/builder should accept responsibility for the performance of their methods and products. Note that there are certain limitations when utilizing RAP ground improvement methods, such as any planned utilities must be placed prior to the installation of the piers. Placing utilities after installation of the RAP ground improvements may result in a disruption of the ground improvement system, which will cause a decrease in bearing capacity.

Footings should be constructed at least 30 inches below the exterior finish grade to provide protection against the detrimental effects of seasonal moisture variations and frost penetration. Strip-type footings should be at least 1.5 feet wide and square footings at least 2.0 feet in dimension, regardless of the applied structural load, in order to provide a bearing area that will account for minor variations in the supporting soil.

5.2 Preliminary Deep Foundation Recommendations

Due to the relatively large anticipated loads given in Table 1 for the project, it is TSi's opinion that the proposed structures should be supported by deep foundations in the case that ground improvement methods are not implemented. This could include the use of drilled shafts or driven H-piles. The values provided below are intended for preliminary design only and should NOT be used for final design of structures. It is not known whether the borings are located within the final planned structure footprints and subsurface conditions are likely to vary across the site. It is TSi's recommendation that additional subsurface exploration be performed before the final design of any deep foundation elements.

Drilled Shafts

Drilled shafts could be used for support of the proposed structures. An estimated allowable side resistance value of 320 pounds per square foot for the native soils and an allowable ending bearing

capacity of 25 ksf for shale or limestone bedrock could be used for preliminary design of the structures. It is recommended that the upper 3 feet of the shaft be assumed to offer zero side resistance. Side resistance for uplift loading is equal to 2/3 of the side resistance used for design.

Groundwater may be encountered while each shaft is being constructed. Provisions should be made to dewater the base of the excavation prior to reinforcing steel installation. Each shaft should be cast the same day it is completed and approved. The base of each shaft should be cleaned of loose rock or soil material using a cleanout bucket. The shaft should continually be pumped as necessary to prevent the accumulation of water. No more than one inch of water accumulation on the shaft base should be allowed at the time of concrete placement.

Temporary casings will likely be needed during the construction of drilled shafts. The casings are used to stabilize the sides of the drilled shafts from sloughing during excavation procedures and placement of concrete and are typically seated in the bedrock for stability. Seated often requires a "twister bar" attachment to a Kelly bar which can be used to allow the drill rig to apply torque to the casing and advance it in the underlying soil or bedrock.

H-Piles

It is feasible to support the proposed structures on steel H-piles driven to practical refusal on bedrock. The H-piles would be driven through the overburden materials and seated on the competent limestone below. The capacity of piles driven to practical refusal on limestone bedrock will be controlled by the structural capacity of the pile. Driven H-piles terminating on shale may not achieve these capacities and may be governed by frictional capacities. Table 3 presents structural capacities of common pile sections as presented in the MoDOT EPG 751.36.3:

TABLE 3
STRUCTURAL STEEL H-PILE CAPACITIES

		GRA	ADE 50
Section	End Area (in2)	Structural Nominal Resistance (kips)	Structural Factored Compression Resistance (\$\phi=0.5\$) (kips)
HP 12x53	15.5	775	380
HP 14x73	21.4	1070	535

5.3 Preliminary Deep Foundation Lateral Loads

The lateral load capacity of deep foundations will vary based on the dimensions, depth to bedrock, and condition of the bedrock. Foundations subjected to lateral loads should be designed and analyzed for lateral deflection using the LPILE Version 6 computer program by Ensoft, Inc., or an

equivalent program. This program analyzes pile deflection as a function of the design loads, foundation properties and subsurface conditions.

Recommended parameters for use in the preliminary evaluation of lateral load capacity and deflection for deep foundations are presented in Table 4. The lateral design parameters below assume that no interaction of loading will occur between the drilled shaft foundations. This condition can be achieved if the foundations are spaced at least 3 diameters apart (center-to-center spacing) in a direction perpendicular to the applied loading and at least 6 diameters apart (center-to-center spacing) in a direction parallel to the applied loading. If the foundations are more closely spaced than this, then a reduction in the lateral design parameters would apply as presented in Table 5.

TABLE 4
LPILE PARAMETERS
(BASED ON BORINGS B-01 TO B-08)

Material	Approximate Elevation, ft	L-PILE Material Type	Effective Unit Weight Note 1 γ', pcf	Effective Angle of Internal Friction, Φ, degrees	Undrained Cohesion psf	Soil Modulus Parameter Note 1 k, pci	E ₅₀ Value Note 2
Native Lean Clay	Above 835	Stiff Clay w/o Free Water	125 (62.6)	N/A	1,500	500	0.007
Dense Sand	835 to 830	Sand (Reese)	115 (52.6)	36	N/A	157 (97)	N/A
Material	Approximate Elevation, ft	L-PILE Material Type	Effective Unit Weight ^{Note 1} γ', pcf	$ m K_{rm}$	Uniaxial Compressive Strength (psi)	Rock Modulus (psi)	RQD
Limestone	830 to 828	Strong Rock	160 (97.6)	0.0005	15,000	7.0 x 10 ⁶	70
Shale	Below 828	Weak Rock	140 (77.6)	0.0005	100	7,000	25

¹Use first value above water table and value in parentheses below water table.

<u>Group Effect – Laterally Loaded</u>

Laterally loaded piers can have varying degrees of group interactions when center-to-center spacing are less than six diameters in the direction of loading. Allowable passive resistance provided by a row of piers in line with the direction of the load should be reduced by using a p-multiplier (P_m) method using lateral loading software of a single pile, such as LPILE. This method scales the p-y curves of a single shaft to determine the group shaft effect. The recommended p-multipliers are shown in Table 5 below:

²Version 6 of LPILE requires input of unconfined compressive strength (q_u) for strong rock models.

		P-Multiplier, P _m				
Pile Spacing (c-c)	3D	≥6D				
Lead Row	0.7	0.85	1.0	1.0		
2nd Row	0.5	0.65	0.85	1.0		
3rd and higher Rows	0.35	0.5	0.7	1.0		

5.4 LATERAL EARTH PRESSURES

Lateral earth pressure parameters are provided for the design of the buried structures, such as the piping, below grade manhole/vaults, and retaining walls that may be included in the project. Earth pressures are a function of the excavation configuration and the backfill materials. Lateral earth pressure parameters are provided in Table 6 for the design of these subsurface structures. Hydrostatic forces should be added to the analyses below the design groundwater level unless the structure is designed with a permanent underdrain or pump system to prevent buildup of hydrostatic forces on the structure.

Below-grade structures that are restricted from movement at the top, such as footings or foundation walls and manholes, should be designed to resist at-rest pressures. Walls that are free to move and deflect at the top should be designed to resist active earth pressures. A horizontal deflection at the top of the wall of approximately 1% of the freestanding wall height is typically required to permit active pressure to develop. Earth pressures are a function of the excavation configuration and the backfill materials.

TABLE 6
LATERAL EARTH PRESSURE PARAMETERS FOR SUBSURFACE STRUCTURES*

Parameter		Backfilled with Crushed Limestone	Backfilled with Cohesive Soil	Backfill with Sand
At-Rest Equivalent	Drained	55 pcf	72 pcf	58 pcf
Fluid Pressure	Undrained	91 pcf	99 pcf	89 pcf
Active Equivalent	Drained	35 pcf	51 pcf	38 pcf
Fluid Pressure	Undrained	81 pcf	88 pcf	80 pcf
Passive Equivalent	Drained	480 pcf	308 pcf	345 pcf
Fluid Pressure	Undrained	310 pcf	217 pcf	220 pcf
Soil Unit Weight	Soil Unit Weight		125 pcf	115 pcf
Angle of Internal Fric	Angle of Internal Friction for Backfill		25°	30°
Assumed Surcharge C	Condition	None	None	None
Slope Profile Behind Structure		Horizontal	Horizontal	Horizontal

^{*} No factor of safety has been applied to the above values.

Significant wall movements would generally be necessary to develop the full values of passive pressures given; typically, the passive values stated are reduced by up to one-half for design.

To prevent the accumulation of water behind new subsurface walls and resulting hydrostatic pressure, a free-draining granular backfill material is recommended for the walls. The drainage backfill material should be encased in a nonwoven geotextile having a minimum weight of 8 ounces per square yard. A perforated pipe should be placed at the base of the wall to collect the water and carry it to daylight, to a storm sewer, or to a sump.

The effects of vertical surcharge loads or sloping ground behind the wall are not included for the stated fluid pressures. The effect of surface loading may be included as a uniform horizontal load against the wall equal to one-half the vertical load intensity.

5.5 PAVEMENT SUBGRADE RECOMMENDATIONS FOR NEW ACCESS ROADWAYS

Based on the general character of the soils encountered in Borings B-09 and B-10 at the project site, and assuming a properly prepared subgrade, a California Bearing Ratio (CBR) value of 3.0 is considered appropriate for use in designing the flexible pavement sections for the site. Rigid pavement design can be based on a modulus of subgrade reaction (k) of 55 pci for the subgrade. Allowances should be included to improve unsuitable pavement areas encountered during construction. These values for rigid and flexible pavement design are based on the requirement that the pavement subgrade be prepared in accordance with the recommendations provided in this report. TSi recommends that a 6.0-inch base course of well-graded crushed limestone, such as MoDOT Type 5 or 7, be placed below all new pavements.

5.6 SEISMIC SITE CLASSIFICATION

Based on the general soil characteristics as determined by field and laboratory tests and the depths to bedrock, the project area is designated as Site Class D, in accordance with the International Building Code (IBC) and ASCE 7.

The N-values from the borings suggest that the soil has adequate density and cohesion to resist liquefaction in consideration of the distance to known seismic sources. Thus, the site soil is not considered to be susceptible to liquefaction, or to substantial settlement or loss in strength when subject to the design earthquake loading.

5.7 CORROSION POTENTIAL

A soil sample at depth of 3.5 to 5.0 feet at Boring B-07 was selected for chemical and physical testing to determine the corrosion potential. Tests were completed for pH, electrical resistivity, sulfide content, sulfate content, oxidation/reduction potential, and chloride content on the sample. The results of these tests are presented in Table 7. The results of these laboratory tests were used to evaluate the corrosion potential of the soil using DIPRA's "10 Point" evaluation system, as outlined in Table 7. Our interpretation of the test results indicates that the selected soil sample is moderately corrosive to buried ferrous metal piping, cast iron pipes, or other objects made of these materials.

To evaluate the potential for sulfate attack on buried concrete, laboratory chemical tests were completed on the samples. The results of the tests indicate that water soluble sulfates were not detected in the sample. Interpretation of these test results, using Section 318 of the ACI Manual of Concrete Practice, indicates that the on-site materials may have negligible sulfate exposure characteristics.

TABLE 7
LABORATORY TEST RESULTS
DIPRA CORROSION POTENTIAL "10 POINT" SCORING SYSTEM

Parameter	Range	Points	Laboratory Results	Points Assigned for the Soil Sample
Resistivity (Ohms-cm)	< 1500 1500 - 1800 1800 - 2100 2100 - 2500 2500 - 3000 > 3000	10 8 5 2 1 0	16,900	0
рН	0.0 - 2.0 $2.0 - 4.0$ $4.0 - 6.5$ $6.5 - 7.5$ $7.5 - 8.5$ > 8.5	5 3 0 0 0 0 0 3	6.6	0
Redox (mV)	> 100 50 - 100 0 - 50 Negative	0 3.5 4 5	244.2	0
Sulfides	Positive Trace Non-Detect	3.5 2 0	Positive	3.5
Moisture	Poor drainage, <u>continuously wet</u> Fair drainage, <u>generally moist</u> Good drainage, <u>generally dry</u>	2 1 0	21.4%	1
‡ 3 points ass	signed if sulfides are present and red	ox is < 0 .		TOTAL =4.5

6.0 SITE PREPARATION AND EXCAVATION CONSIDERATIONS

6.1 Subgrade Preparation

Construction areas should be stripped of vegetation, root mass, organic soil and any other deleterious materials prior to site excavation and grading. Care should be taken during stripping to prevent excessive disturbance of the underlying soil. After the removal of these materials, and where further excavation is not required for fill removal, the exposed subgrade should be proofrolled. Proofrolling is accomplished by passing over the subgrade with proper equipment such as a loaded tandem-axle dump truck or scraper and observing the subgrade for pockets of excessively soft, wet, disturbed, or otherwise unsuitable soils. Any unacceptable materials thus found should be excavated and either recompacted or replaced with new structural fill.

Prior to placing fill in any area, the subgrade should be scarified to a depth of about 6 inches, the moisture content adjusted to near its optimum moisture content, and the subgrade recompacted in accordance with recommendations made in subsequent sections of this report. The recommended proofrolling and/or scarification and recompaction may be waived if, in the opinion of TSi, this procedure would be detrimental or unnecessary. Following the satisfactory preparation of the subgrade, controlled fill material may be placed.

6.2 EXCAVATIONS

It appears that the existing soils can likely be excavated using conventional earth moving equipment and methods. Trenching, excavating, and bracing should be performed in accordance with OSHA (Occupational Safety and Health Administration) regulations and other applicable regulatory agencies. In accordance with the OSHA excavation standards, the existing soils at the site are considered Type B, which requires a side slope for temporary excavations open less than 24 hours of not steeper than 1.0H:1.0V. However, worker safety and classification of the excavation soil is the responsibility of the contractor. Also according to OSHA requirements, any excavation extending to a depth of more than 20 feet must be designed by a registered professional engineer.

6.3 SUBGRADE PROTECTION

Construction areas should be properly drained in order to reduce or prevent surface runoff from collecting on the exposed subgrade in excavations. Any ponded water on the exposed subgrade or trench bottom should be removed immediately. Temporary storm-water swales and collection areas may be required to control surface water flow into low areas of the site or into trench excavations.

6.4 FILL AND BACKFILL MATERIALS

Structural fill should consist of approved soils or crushed limestone material, free of organic matter and debris. Fill material placed within 24 inches of floor slab subgrade or pavement section should

consist of select Low Volume Change (LVC) fill material. LVC fill should consist of approved, well-graded granular materials or low plasticity cohesive soil. Low plasticity cohesive materials used as LVC fill should consist of inorganic clay with a liquid limit less than 45 and a plasticity index of less than 25. Most of the native lean clays encountered on the site may be reused as fill. Granular fill should have a maximum particle size of 1.5 inches. Fill materials from off-site sources should be approved prior to their use. Soil with decayable material such as wood, metal, or vegetation is not acceptable.

Some of the soil on the site will require the addition of moisture prior to compaction. This should be performed in a controlled manner using a tank truck with a spray bar, and the moistened soil should be thoroughly blended with a disk or pulverizer to produce a uniform moisture content. Repeated passages of the equipment may be required to achieve a uniform moisture content. If this facility is constructed during the winter season, fill materials should be carefully observed to see that no ice or frozen soils are placed as fill or remain in the base materials upon which fill is placed.

Some of the on-site soil may require moisture reduction prior to compaction. During warm weather, moisture reduction can generally be accomplished by disking, or otherwise aerating the soil. When air-drying is not possible, a moisture-reducing chemical additive, such as lime or Class C fly ash, could be used as a drying agent.

6.5 FILL AND BACKFILL PLACEMENT

Cohesive fill should be compacted to a dry density of at least 95% of the standard Proctor maximum dry density (ASTM D 698) of the soil. Granular material, such as crushed limestone, placed for structure or pavement support, should be compacted to at least 100% of the standard Proctor maximum dry density. The moisture content of lean clay or granular fill at the time of compaction should generally be from +/- 3% of the optimum moisture content of the material as determined by the standard Proctor compaction test. Open-graded granular material used for drainage backfill should be compacted to at least 70% of the relative density of the material (ASTM D 4253 and D 4254). Fill should be placed in loose lifts not in excess of 8 inches thick, and compacted to the aforementioned criterion. However, it may be necessary to place fill in thinner lifts to achieve the recommended compaction when using small hand-operated equipment.

7.0 CONSTRUCTION OBSERVATION AND TESTING

It is recommended that TSi be retained during construction to perform testing and observation services for the following items:

- Observation and documentation of the exposed soil after stripping topsoil, during scarification, compaction, and proofrolling;
- Quality assurance testing for concrete and structural steel materials;
- Testing of asphalt and/or concrete materials used for paving; and,
- Placement and compaction of fill materials.

These Quality Assurance services should help verify the design assumptions and maintain construction procedures in accordance with the project plans, specifications, and good engineering practice.

8.0 REPORT LIMITATIONS

This preliminary geotechnical report has been prepared for the exclusive use of **BURNS & MCDONNELL** for the specific application to the subject project. The information and recommendations contained in this report have been made in accordance with generally accepted geotechnical and foundation engineering practices; no other warranties are implied or expressed.

The assessments and recommendations submitted in this report are based in part upon the data obtained from the borings. The nature and extent of variations between the borings may not be evident at this time. If variations appear evident at a later date, it may be necessary to re-evaluate the recommendations of this report.

We emphasize that this report was prepared for design purposes only and may not be sufficient to prepare an accurate construction bid. Contractors reviewing this report should acknowledge that the information and recommendations contained herein are for design purposes.

If conditions at the site have changed due to natural causes or other operations, this report should be reviewed by TSi to determine the applicability of the analyses and recommendations considering the changed conditions. The report should also be reviewed by TSi if changes occur in the structure location, size, and type, in the planned loads, elevations, grading and site development plans or the project concepts.

TSi requests the opportunity to review the final plans and specifications for the project prior to construction to verify that the recommendations in this report are properly interpreted and incorporated in the design and construction documents. If TSi is not accorded the opportunity to make this recommended review, we can assume no responsibility for the misinterpretation of our recommendations.

APPENDIX A Vicinity Map Site and Boring Location Plan

Note: This plan was prepared from an image obtained from Google Earth on January 18, 2024.

Fig	gure 1, Vicinity Map	Project No. 20242002.00	
11	dd Creek WWTP – Pha nsas City, Missouri	Tsi	
No	t to Scale	Approved by: TBS	geotechnical, inc.

Note: This plan was prepared from an image obtained from Google Earth on January 19, 2024.

Figure 2, Site and Boring	Project No. 20242002.00	
Todd Creek WWTP – Pha Kansas City, Missouri	TSI	
Not to Scale	Approved by: TBS	geofechnical, inc.

٨	ΡI	DE.	NΠ	IX	\mathbf{R}

Boring Logs General Notes Unified Soil Classification System

LOG OF BORING NO. B-01 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 863* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Unit Dry Weight Ib/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION Brown and gray, lean CLAY (CL), trace sand SS-1 94 2.50 27 - brown from 3.5 to 15.0 ft. 5 SS-2 100 1.50 27 43 21 22 5 5 3 SS-3 100 4 2.00 23 ST-4 2.50 0.71 23 92 105 -10 - with sand, trace gravel below SS-5 11.0 ft. 8 100 1.75 20 (80% passing No. 200 sieve) 11 SS-6 100 6 19 1.50 12 - brown and gray, sandy below SS-7 18.5 ft. 100 15 1.75 23 18 20 PHASE II.GPJ Brown, clayey fine SAND (SC) 20 100 16 (30% passing No. 200 sieve) 14 30.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 1/31/24 Date Boring Started: Groundwater encountered at 28.5 ft. after 24 hours. 1/31/24 Date Boring Completed: *Elevation estimated using Google Earth data AB Engineer/Geologist: 20242002.00 Project No.:

LOG OF BORING NO. B-01 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 863* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Location: See Site and Boring Undrained Shear Strength, T Unit Dry Weight Ib/cu ft. Plasticity Index Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. RQD MATERIAL DESCRIPTION Brown, clayey fine SAND (SC) ▼ - trace gravel below 28.5 ft. SS-9 6 21 83 6 .30 Boring terminated at 30.0 ft. 35 40 30.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 1/31/24 Groundwater encountered at 28.5 ft. after 24 hours. Date Boring Started: 1/31/24 Date Boring Completed: *Elevation estimated using Google Earth data Engineer/Geologist: AB 20242002.00 Project No.:

LOG OF BORING NO. B-02 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 851* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Sample # Samples Location Plan. RQD Depth, 1 Unit MATERIAL DESCRIPTION Brown, lean CLAY (CL), trace sand - trace fine roots from 1.0 to 3.0 ft. SS-1 83 2.50 26 - brown and gray, with sand from $3.0\ to\ 5.0\ ft.$ ST-2 100 2.25 0.77 98 26 5 (99% passing No. 200 sieve) SS-3 100 6 0.50 29 SS-4 0.75 100 5 26 6 6 SS-5 100 4 1.25 24 5 - trace gravel from 13.0 to 15.0 ft. ST-6 83 3.25 0.92 105 22 40 15 25 15 Brown, clayey GRAVEL (GC), with 56 13 7 (16% passing No. 200 sieve) 6 SS-8 50/0.0 LIMESTONE, gray, hard, slightly weathered, finely crystalline, parted RUN1 70 26 SHALE, dark gray, soft, highly weathered, trace limestone fragments Core loss from 23.7 to 25.0 ft. Completion Depth: 45.0 Boring drilled with CME-550 using HSA and auto SPT. Remarks: 2/8/24 Date Boring Started: Groundwater encountered at 15.5 ft. after 24 hours. Auger Date Boring Completed: 2/8/24 refusal at 20.5 ft. *Elevation estimated using Google Earth Engineer/Geologist: AB data 20242002.00 Project No.:

LOG OF BORING NO. B-02 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 851* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Plasticity Index Location: See Site and Boring Unit Dry Weight Ib/cu ft. Undrained Shear Strength, Graphic Log Water Content, Recovery % Liquid Limit Plastic Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION (possible shale washout) SHALE, dark gray, soft, highly weathered, aphanitic - black, fissile from 25.5 to 26.0 ft. RUN2 - gray from 27.3 to 30.0 ft. 100 55 - calcareous from 28.4 to 40.0 ft. - moderately weathered from 28.4 to 30.0 ft. 30 - moderately hard below 30.0 ft. - slightly weathered from 30.0 to 32.4 ft. RUN3 - moderately weathered from 32.4 to 40.0 ft. 100 53 - fissile from 33.7 to 35.0 ft. 35 RUN4 100 63 - fissile from 37.5 to 40.0 ft. - slightly weathered below 40.0 ft. RUN5 100 72 Boring terminated at 45.0 ft. Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: 45.0 Remarks: 2/8/24 Date Boring Started: Groundwater encountered at 15.5 ft. after 24 hours. Auger Date Boring Completed: 2/8/24 refusal at 20.5 ft. *Elevation estimated using Google Earth AB Engineer/Geologist: data 20242002.00 Project No.:

LOG OF BORING NO. B-03 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 840* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Liquid Limit Plastic Limit Depth, feet Sample # Samples Location Plan. RQD Unit MATERIAL DESCRIPTION Brown, lean CLAY (CL), trace sand SS-1 61 1.75 25 - brown and gray from 3.0 to 10.0 ST-2 0.67 63 2.50 100 23 33 17 16 5 SS-3 100 3 2.00 23 (94% passing No. 200 sieve) ST-4 79 106 22 2.00 1.16 -10 - brown, with gravel below 11.0 ft. SS-5 75 0.50 76 LIMESTONE, gray, hard weathered, finely crystalline, parted SHALE, dark gray, soft, highly RUN1 <u>weathered, aphanitic</u> 31 0 Core loss from 13.0 to 15.0 ft. (possible shale washout) Calcareous SHALE, dark gray, moderately hard, weathered, aphanitic RUN2 100 90 - fissile from 18.0 to 21.1 ft. RUN3 100 58 fissile below 25.0 ft. Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: 35.0 Remarks: 2/12/24 Date Boring Started: Groundwater encountered at 5.9 ft. after 24 hours. 2/12/24 Date Boring Completed: Sampler refusal at 11.7 ft. Auger refusal at 12.0 ft. Engineer/Geologist: AB *Elevation estimated using Google Earth data 20242002.00 Project No.:

LOG OF BORING NO. B-03 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 840* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Location: See Site and Boring Undrained Shear Strength, T Unit Dry Weight Ib/cu ft. Plasticity Index Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. RQD MATERIAL DESCRIPTION Calcareous SHALE, dark gray, moderately hard, weathered, aphanitic, fissile RUN4 100 78 - 1.0" limestone seam at 28.3 ft. 30 RUN5 100 48 -35 Boring terminated at 35.0 ft. 40 35.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 2/12/24 Groundwater encountered at 5.9 ft. after 24 hours. Date Boring Started: 2/12/24 Date Boring Completed: Sampler refusal at 11.7 ft. Auger refusal at 12.0 ft. Engineer/Geologist: AB *Elevation estimated using Google Earth data 20242002.00 Project No.:

LOG OF BORING NO. B-04 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 845* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Location: See Site and Boring Unit Dry Weight Ib/cu ft. Plasticity Index Undrained Shear Strength, T Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Samples Location Plan. RQD MATERIAL DESCRIPTION Brown and gray, lean CLAY (CL), trace sand 5 SS-1 100 9 2.00 27 45 23 22 (98% passing No. 200 sieve) SS-2 100 15 1.50 28 24 5 SS-3 14 100 1.50 29 21 - with sand below 8.5 ft. SS-4 100 13 1.00 21 (83% passing No. 200 sieve) 13 SS-5 100 11 0.75 20 ∇ 12 - trace gravel below 13.0 ft. ST-6 29 1.50 102 24 15 SS-7 Boring terminated at 15.6 ft. 20 Boring drilled with CME-550 using HSA and auto SPT. 15.6 Completion Depth: Remarks: Groundwater encountered at 12.0 ft. during drilling, at 11.0 1/31/24 Date Boring Started: ft. prior to backfill, and at 8.2 ft. after 24 hours. Auger 1/31/24 Date Boring Completed: AB refusal at 15.6 ft. *Elevation estimated using Google Earth Engineer/Geologist: 20242002.00 Project No.: data

LOG OF BORING NO. B-05 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 853* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. RQD Unit MATERIAL DESCRIPTION Brown and gray, lean CLAY (CL), trace sand - trace fine roots from 1.0 to 2.5 ft. SS-1 78 2.50 27 46 23 23 8 - with sand from 3.5 to 5.0 ft. SS-2 100 4 1.50 28 5 5 (91% passing No. 200 sieve) SS-3 100 20 2.00 24 3.00 0.35 ST-4 96 119 14 -10 - brown below 11.0 ft. - trace gravel from 11.0 to 12.5 ft. SS-5 100 5 1.50 18 6 SS-6 80 50/5.5 16 - with gravel from 13.5 to 14.0 ft. -15 Brown, clayey SAND (SC), with gravel gravelly below 18.5 ft. 10 (12% passing No. 200 sieve) SS-7 17 5 20 SS-8 100 50/2.0 Boring terminated at 23.7 ft. Boring drilled with CME-550 using HSA and auto SPT. 23.7 Completion Depth: Remarks: Groundwater encountered at 23.5 ft. during drilling, at 21.5 1/31/24 Date Boring Started: 1/31/24 ft. prior to backfill, and at 20.2 ft. after 24 hours. Sampler Date Boring Completed: AB Refusal at 14.0 ft. Auger Refusal at 24.0 ft. *Elevation Engineer/Geologist: 20242002.00 Project No.: estimated using Google Earth data

II.GPJ

LOG OF BORING NO. B-06 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 847* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD Unit MATERIAL DESCRIPTION Brown, lean CLAY (CL), trace sand - trace fine roots from 1.0 to 2.5 ft. SS-1 83 6 3.25 27 47 23 24 - brown and gray below 3.0 ft. ST-2 100 3.25 1.35 101 25 5 SS-3 100 6 2.00 23 (93% passing No. 200 sieve) - with sand from 8.0 to 12.0 ft. 21 ST-4 100 3.50 1.24 110 -10 SS-5 100 10 3.50 20 - sandy below 12.0 ft. 18 Brown and gray, clayey SAND (SC) (46% passing No. 200 sieve) SS-6 4 100 0.75 21 4 LIMESTONE, gray, hard, highly SS-7 46 50/4.5 weathered LIMESTONE, gray, hard, slightly weathered, very finely crystalline, parted RUN1 100 77 SHALE, dark gray, very soft, highly weathered, with limestone fragments - soft below 20.0 ft. RUN2 100 70 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: 40.0 Remarks: 2/7/24 Date Boring Started: Groundwater encountered at 10.5 ft. after 24 hours. Date Boring Completed: 2/7/24 Auger refusal at 16.0 ft. *Elevation estimated using Engineer/Geologist: AB Google Earth data 20242002.00 Project No.:

LOG OF BORING NO. B-06 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 847* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Undrained Shear Strength, T Unit Dry Weight Ib/cu ft. Plasticity Index Location: See Site and Boring Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION SHALE, dark gray, soft, highly weathered, with limestone fragments Shaley LIMESTONE, gray, hard, moderately weathered RUN3 97 38 SHALE, dark gray, soft, highly weathered, aphanitic - embedded limestone fragments from 28.2 to 28.6 ft. 30 - fissile below 30.0 ft. RUN4 98 15 35 RUN5 100 25 Boring terminated at 40.0 ft. 40.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 2/7/24 Groundwater encountered at 10.5 ft. after 24 hours. Date Boring Started: Date Boring Completed: 2/7/24 Auger refusal at 16.0 ft. *Elevation estimated using Engineer/Geologist: AB Google Earth data 20242002.00 Project No.:

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Plasticity Index Location: See Site and Boring Unit Dry Weight Ib/cu ft. Undrained Shear Strength, Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION Brown, lean CLAY (CL), trace sand - trace fine roots from 1.0 to 2.5 ft. SS-1 5 7 67 2.25 27 - brown and gray from 3.5 to 15.0 SS-2 94 9 1.75 26 44 21 23 12 5 SS-3 14 100 1.50 27 22 (94% passing No. 200 sieve) SS-4 100 2.00 22 11 13 ST-5 96 2.75 1.06 105 21 - trace gravel below 13.5 ft. SS-6 5 5 100 22 1.50 Brown, clayey SAND (SC) - trace gravel from 18.0 to 20.0 ft. ST-7 75 3.50 0.30 111 19 (49% passing No. 200 sieve) 20 - with gravel below 23.5 ft. 18 18 26 Boring drilled with CME-550 using HSA and auto SPT. 250.0 Completion Depth: Remarks: Date Boring Started: 2/12/24 Groundwater encountered at 27.0 ft. during drilling. Auger Date Boring Completed: 2/14/24 refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

II.GPJ

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Plasticity Index Location: See Site and Boring Unit Dry Weight Ib/cu ft. Undrained Shear Strength, Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION Brown, clayey SAND (SC), with gravel (31% passing No. 200 sieve) 30 20 SS-9 - 2.0" shale seam at 29.0 ft. 100 LIMESTONE, gray, hard, slightly RUN1 92 weathered, finely crystalline SHALE, gray, moderately hard, moderately weathered, aphanitic, parted - calcareous from 30.8 to 31.0 ft. - soft from 31.0 to 40.0 ft. - calcareous from 32.5 to 32.8 ft. RUN2 23 100 35 - highly weathered from 35.7 to 37.6 ft. RUN3 100 48 - fissile below 40.0 ft. - 0.6" limestone seam at 42.0 ft. RUN4 100 44 RUN5 97 0 250.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 2/12/24 Date Boring Started: Groundwater encountered at 27.0 ft. during drilling. Auger 2/14/24 Date Boring Completed: refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Unit Dry Weight Ib/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION SHALE, gray, moderately hard, moderately weathered, aphanitic, fissile RUN6 100 35 55 - micaceous from 55.0 to 60.0 ft. RUN7 100 77 60 - highly weathered, fissile below 60.0 ft. RUN8 100 0 65 RUN9 100 0 - micaceous below 70.0 ft. Core loss from 71.8 to 75.0 ft. RUN10 35 (possible obstruction of drill bit 0 causing shale washout) 250.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 2/12/24 Date Boring Started: Groundwater encountered at 27.0 ft. during drilling. Auger 2/14/24 Date Boring Completed: refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Sample # Location Plan. Samples RQD Depth, Unit MATERIAL DESCRIPTION SHALE, gray, moderately hard, highly weathered, aphanitic, fissile, micaceous - 0.6" limestone seam at 76.7 ft. RUN11 72 45 - trace gravel below 78.5 ft. Core loss from 78.6 to 81.0 ft. (possible washout due to highly weathered shale) 80 SHALE, gray, moderately hard, highly weathered, aphanitic, parted RUN12 77 35 - 1.8" limestone seam at 82.8 ft. - calcareous below 83.7 ft. LIMESTONE, gray, hard, slightly weathered, finely crystalline - algal below 85.0 ft. 85 - 0.5" vug at 86.8 ft. RUN13 100 100 90 - 0.5" vug at 90.3 ft. SHALE, gray, soft, highly weathered, aphanitic, parted LIMESTONE, gray, hard, slightly RUN14 99 91 weathered, finely crystalline, thin bedded - algal from 91.8 to 95.6 ft. - 2.4" shale seam at 95.6 ft. RUN15 75 97 - fossiliferous below 97.9 ft. Calcareous SHALE, dark gray, moderately hard Completion Depth: Boring drilled with CME-550 using HSA and auto SPT. 250.0 Remarks: 2/12/24 Date Boring Started: Groundwater encountered at 27.0 ft. during drilling. Auger 2/14/24 Date Boring Completed: refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Liquid Limit Plastic Limit Sample # Samples Location Plan. RQD Depth, Unit MATERIAL DESCRIPTION Calcareous SHALE, dark gray Shaley LIMESTONE, dark gray, hard, slightly weathered, finely crystalline, thin bedded, fossiliferoús RUN16 100 97 SHALE, dark gray, moderately hard, moderately weathered, aphanitic, parted -105 LIMESTONE, gray, hard, slightly weathered, finely crystalline, thin RUN17 80 100 bedded, fossiliferous Shaley LIMESTONE, dark gray, moderately hard, moderately weathered -110-SHALE, dark gray, moderately hard, slightly weathered, aphanitic, RUN18 83 21 parted - micaceous below 112.0 ft. RUN19 100 61 - fissile below 115.0 ft. RUN20 94 40 LIMESTONE, light gray, hard, slightly weathered, finely crystalline, thin bedded RUN21 100 95 SHALE, dark gray, soft, highly weathered, aphanitic, parted LIMESTONE, gray, hard Completion Depth: Boring drilled with CME-550 using HSA and auto SPT. 250.0 Remarks: 2/12/24 Date Boring Started: Groundwater encountered at 27.0 ft. during drilling. Auger Date Boring Completed: 2/14/24 refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD Unit MATERIAL DESCRIPTION LIMESTONE, gray, hard, slightly weathered, finely crystalline, thin bedded RUN22 95 48 SHALE, gray, soft, highly weathered, aphanitic, parted, fissile, trace limestone fragments -130-RUN23 95 0 - maroon from 133.5 to 133.9 ft. -135-RUN24 100 0 - calcareous below 141.4 ft. RUN25 100 55 LIMESTONE, gray, hard, slightly weathered, finely crystalline, thin bedded RUN26 Calcareous SHALE, dark gray, moderately hard, highly weathered, aphanitic, parted, trace limestone 100 85 fragments - 1.0" limestone seam at 148.8 ft. 250.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 2/12/24 Date Boring Started: Groundwater encountered at 27.0 ft. during drilling. Auger Date Boring Completed: 2/14/24 refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Sample # Samples Location Plan. RQD Depth, Unit MATERIAL DESCRIPTION Calcareous SHALE, dark gray - 1.0" limestone seam at 150.2 ft LIMESTONE, gray, hard, slightly weathered, finely crystalline SHALE, dark gray, moderately hard, slightly weathered, aphanitic, RUN27 100 85 - micaceous from 151.3 to 155.4 ft. -155-- 1.0" sandy clay seam - soft, highly weathered, fissile below 155.4 ft. RUN28 100 0 - gray below 159.3 ft. -160-Core loss from 161.2 to 162.6 ft. RUN29 58 0 (possible shale washout) SHALE, gray, soft, highly weathered, aphanitic, parted - fissile from 162.6 to 168.9 ft. 100 RUN30 highly weathered from 163.3 to 100 168.9 ft. -165- moderately hard from 163.3 to 169.3 ft. RUN31 100 8 dark gray below 168.9 ft. - moderately weathered, calcareous from 168.9 to 172.5 ft. - hard, very finely crystalline from 169.3 to 172.5 ft. fossiliferous from 170.0 to 172.5 RUN32 100 60 - soft, highly weathered, fissile from 172.5 to 172.7 ft. LIMESTONE, gray, hard, slightly weathered, fossiliferous 100 100 Completion Depth: Boring drilled with CME-550 using HSA and auto SPT. 250.0 Remarks: 2/12/24 Groundwater encountered at 27.0 ft. during drilling. Auger Date Boring Started: 2/14/24 Date Boring Completed: refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Graphic Log Undrained Shear Strength, Water Content, Recovery % Plastic Limit Liquid Limit Sample # Location Plan. RQD Depth, Unit MATERIAL DESCRIPTION LIMESTONE, gray, hard, slightly weathered, finely crystalline, thin bedded, fossiliferous - 6.0" calcareous shale seam at RUN34 100 95 177.0 ft. - 3.6" calcareous shale seam at 178.5 ft. -180 Calcareous SHALE, dark gray, moderately hard, slightly weathered, aphanitic, fossiliferous, parted - 5.0" fossiliferous limestone seam at 181.0 ft. RUN35 100 93 - gray from 182.2 to 182.4 ft. -185 LIMESTONE, dark gray, hard, slightly weathered, thin bedded, finely crystalline, fossiliferous, RUN36 100 100 interbedded shale - 2.0" calcareous shale seam at 189.8 ft. -190-SHALE, dark gray, moderately hard, slightly weathered, aphanitic LIMESTONE, gray, hard, slightly weathered, finely crystalline RUN37 100 83 SHALE, dark gray, moderately hard, slightly weathered, fissile LIMESTONE, gray, hard, slightly weathered, finely crystalline, thin bedded - 4.8" calcareous shale seam at 195.7 ft. - tan, hard, moderately weathered from 197.2 to 197.6 ft. RUN38 98 83 - gray and dark gray from 197.6 to 200.3 ft. - very hard from 197.6 to 209.3 ft. Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: 250.0 Remarks: 2/12/24 Groundwater encountered at 27.0 ft. during drilling. Auger Date Boring Started: Date Boring Completed: 2/14/24 refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

LOG OF BORING NO. B-07 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Liquid Limit Plastic Limit Sample # Samples Location Plan. RQD Depth, 1 Unit MATERIAL DESCRIPTION LIMESTONE, gray and dark gray, very hard, slightly weathered, finely crystalline, the look deep and the state of the state - vuggy from 200.8 to 200.9 ft. - 1.0" vug with crystals at 202.0 ft. RUN39 100 100 - dark gray, shaley, fossiliferous from 202.6 to 203.8 ft. 205 100 RUN40 100 - 1.0" chert band at 207.9 ft. -210-- fossiliferous below 210.0 ft. RUN41 98 97 -215 RUN42 98 97 - shaley from 217.7 to 218.3 ft. coarsely crystalline below 219.3 ft. - shaley below 221.0 ft. SHALE, dark gray, moderately hard, slightly weathered, aphanitic, parted RUN43 40 95 - 1.0" limestone seam at 223.7 ft. - highly weathered below 223.8 ft. 250.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 2/12/24 Date Boring Started: Groundwater encountered at 27.0 ft. during drilling. Auger 2/14/24 Date Boring Completed: refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

LOG OF BORING NO. B-07 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 858* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit feet Sample # Location Plan. Samples RQD Depth, Unit MATERIAL DESCRIPTION SHALE, gray, moderately hard, moderately weathered, aphanitic, parted calcareous below 225.4 ft. LIMESTONE, gray, hard, highly weathered, finely crystalline, thin RUN44 100 83 - fractures from 226.6 to 229.4 ft. -230-- slightly weathered from 230.0 to 240.0 ff. - fractures from 231.7 to 232.4 ft. - 3.0" cavity at 231.9 ft. RUN45 100 83 - mottled gray from 234.4 to 235.0 -235-- chert nodule at 235.2 ft. - fractures from 237.2 to 237.4 ft. RUN46 100 83 - trace pyrite from 239.6 to 240.0 ft. 240 - moderately weathered below 240.0 ft. - fractures from 240.5 to 241.2 ft. RUN47 80 98 - stylolite from 243.1 to 243.2 ft. - dárk gray, vuggy from 243.2 to 243.8 ft. SHALE, dark gray, moderately hard, slightly weathered - calcareous from 245.8 to 246.1 ft. moderately weathered, fissile RUN48 100 70 below 246.1 ft. LIMESTONE, gray, hard, slightly weathered Boring terminated at 250.0 ft. Completion Depth: Boring drilled with CME-550 using HSA and auto SPT. 250.0 Remarks: 2/12/24 Date Boring Started: Groundwater encountered at 27.0 ft. during drilling. Auger Date Boring Completed: 2/14/24 refusal at 29.2 ft. *Elevation estimated using Google Earth AB/JM Engineer/Geologist: data Project No.: 20242002.00

TSi Geotechnical Inc.

LOG OF BORING NO. B-08 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 870* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. RQD Unit MATERIAL DESCRIPTION Brown, lean CLAY (CL), trace sand - trace fine roots from 1.0 to 2.5 ft. SS-1 72 2.50 26 8 - brown and gray from 3.5 to 20.0 ft. 7 SS-2 89 1.50 28 7 5 (98% passing No. 200 sieve) SS-3 100 3 0.75 30 ST-4 0.55 23 79 0.75 100 -10 SS-5 100 3 0.50 25 33 15 18 4 trace gravel from 13.5 to 15.0 ft.with sand from 13.5 to 20.0 ft. SS-6 3 100 24 1.50 ST-7 96 2.00 0.56 102 25 20 II.GPJ sandy below 23.5 ft. (64% passing No. 200 sieve) 4 1.25 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: 60.0 Remarks: 2/8/24 Date Boring Started: Groundwater encountered at 26.8 ft. after 24 hours. Date Boring Completed: 2/8/24 Sampler refusal at 39.4 ft. *Elevation estimated using AB Engineer/Geologist: Google Earth data 20242002.00 Project No.:

LOG OF BORING NO. B-08 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 870* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Dry Weight, lb/cu ft. Plasticity Index Location: See Site and Boring Undrained Shear Strength, Graphic Log Water Content, Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD Unit MATERIAL DESCRIPTION Brown, sandy lean CLAY (CL) Brown, fine grained SAND (SP), trace gravel 7 SS-9 67 15 8 30 Brown, clayey fine to medium SAND (SC) SS-10 83 5 22 (28% passing No. 200 sieve) 35 SHALE, gray, soft, highly weathered, aphanitic 36 SS-11 100 11 50/4.0 - dark gray below 39.4 ft. RUN1 100 0 - fissile below 40.0 ft. LIMESTONE, gray, hard, weathered, very finely crystalline, parted - 1.0" shale seam at 41.8 ft. - 3.0" calcareous shale seam at RUN2 100 47 42.3 ft. SHALE, gray, soft, highly weathered, aphanitic - embedded limestone fragments from 46.0 to 50.0 ft. RUN3 100 15 - dark gray below 50.0 ft. Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: 60.0 Remarks: 2/8/24 Date Boring Started: Groundwater encountered at 26.8 ft. after 24 hours. Date Boring Completed: 2/8/24 Sampler refusal at 39.4 ft. *Elevation estimated using AB Engineer/Geologist: Google Earth data 20242002.00 Project No.:

LOG OF BORING NO. B-08 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 870* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Location: See Site and Boring Undrained Shear Strength, T Unit Dry Weight Ib/cu ft. Plasticity Index Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION SHALE, dark gray, soft, highly weathered, aphanitic - 1.0" limestone seam at 52.0 ft. RUN4 100 15 - 1.0" limestone seam at 53.9 ft. - fissile below 54.2 ft. 55 - embedded limestone fragments from 56.0 to 57.0 ft. RUN5 0 100 60 Boring terminated at 60.0 ft. 65 60.0 Boring drilled with CME-550 using HSA and auto SPT. Completion Depth: Remarks: 2/8/24 Date Boring Started: Groundwater encountered at 26.8 ft. after 24 hours. 2/8/24 Date Boring Completed: Sampler refusal at 39.4 ft. *Elevation estimated using Engineer/Geologist: AB Google Earth data 20242002.00 Project No.:

LOG OF BORING NO. B-09 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 880* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Plasticity Index Location: See Site and Boring Unit Dry Weight Ib/cu ft. Undrained Shear Strength, Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION Brown and gray, lean CLAY (CL), with sand - shaley, with gravel from 1.0 to 2.5 SS-1 56 14 3.00 28 39 - brown, trace sand below 3.5 ft. SS-2 83 6 3.25 23 8 5 ST-3 100 3.75 0.69 101 22 40 19 21 SS-4 100 3.00 21 5 6 - trace gravel from 11.0 to 12.5 ft. (92% passing No. 200 sieve) SS-5 100 32 2.75 20 SS-6 100 13 1.00 23 16 - trace gravel below 18.5 ft. 2 5 3 SS-7 100 0.75 27 20 Boring terminated at 20.0 ft. II.GPJ TODD 20.0 Boring drilled with CME-550 using FA and auto SPT. Completion Depth: Remarks: 1/31/24 Date Boring Started: Groundwater encountered at 17.6 ft. after 24 hours. Date Boring Completed: 1/31/24 *Elevation estimated using Google Earth data AB Engineer/Geologist: 20242002.00 Project No.:

LOG OF BORING NO. B-10 TSi Geotechnical Inc. 8248 NW 101st Terrace, #5 Project Description: Todd Creek WWTP - Phase II Kansas City, Missouri 64153 Kansas City, Missouri (816) 599-7965 (816) 599-7967 FAX Surface El.: 884* Penetration Blows Per 6 inches % Hand Penetrometer, TSF Location: See Site and Boring Undrained Shear Strength, T Unit Dry Weight Ib/cu ft. Plasticity Index Water Content, Graphic Log Recovery % Plastic Limit Liquid Limit Depth, feet Sample # Location Plan. Samples RQD MATERIAL DESCRIPTION Brown and gray, shaley lean CLAY (CL), trace shale fragments 10 SS-1 56 19 4.00 19 39 20 19 26 trace shaley limestone fragments below 3.5 ft. 17 13 >4.5 16 SS-2 12 5 SS-3 50/0.0 Boring terminated at 5.1 ft. -10 15 20 Boring drilled with CME-550 using FA and auto SPT. Completion Depth: Remarks: 1/31/24 Groundwater not encountered during drilling or after 24 Date Boring Started: 1/31/24 Date Boring Completed: hours. Auger refusal at 5.1 ft. *Elevation estimated using Engineer/Geologist: AB Google Earth data 20242002.00 Project No.:

GENERAL NOTES

The number of borings is based on: topographic and geologic factors; the magnitude of structure loading; the size, shape, and value of the structure; consequences of failure; and other factors. The type and sequence of sampling are selected to reduce the possibility of undiscovered anomalies and maintain drilling efficiency. Attempts are made to detect and/or identify occurrences during drilling and sampling such as the presence of water, boulders, gas, zones of lost circulation, relative ease or resistance to drilling progress, unusual sample recovery, variation in resistance to driving split-spoon samplers, unusual odors, etc. However, lack of notation regarding these occurrences does not preclude their presence.

Although attempts are made to obtain stabilized groundwater levels, the levels shown on the Logs of Boring may not have stabilized, particularly in more impermeable cohesive soils. Consequently, the indicated groundwater levels may not represent present or future levels. Groundwater levels may vary significantly over time due to the effects of precipitation, infiltration, or other factors not evident at the time indicated.

Unless otherwise noted, soil classifications indicated on the Logs of Boring are based on visual observations and are not the result of classification tests. Although visual classifications are performed by experienced technicians or engineers, classifications so made may not be conclusive.

Generally, variations in texture less than one foot in thickness are described as layers within a stratum, while thicker zones are logged as individual strata. However, minor anomalies and changes of questionable lateral extent may appear only in the verbal description. The lines indicating changes in strata on the Logs of Borings are approximate boundaries only, as the actual material change may be between samples or may be a gradual transition.

Samples chosen for laboratory testing are selected in such a manner as to measure selected physical characteristics of each material encountered. However, as samples are recovered only intermittently and not all samples undergo a complete series of tests, the results of such tests may not conclusively represent the characteristics of all subsurface materials present.

NOTATION USED ON BORING LOGS

APPROXIMATE PROPORTIONS

PARTICLE SIZE

TRACE WITH MODIFIER	<15% 15-30% >30%	BOULI COBBI GRAVI	LES	>12 Inches 12 Inches – 3 Inches
MODIFIER	>3070	GKAVI	Coarse	3 Inches − ¾ Inch
			Fine	³ / ₄ Inch – No. 4 Sieve (4.750 mm)
		SAND		
Clay or clayey ma		Coarse	No. 4 – No. 10 Sieve (2.000 mm)	
material or modif	ier, regardless of		Medium	No. 10 – No. 40 Sieve (0.420 mm)
relative proportio	ns, if the clay content is		Fine	No. 40 – No. 200 Sieve (0.074 mm)
sufficient to domi	inate the soil properties.	SILT		No. 200 Sieve - 0.002 mm
		CLAY		< 0.002 mm

PENETRATION – BLOWS

Number of impacts of a 140-pound hammer falling a distance of 30 inches to cause a standard split-barrel sampler, 1 3/8 inches I.D., to penetrate a distance of 6 inches. The number of impacts for the first 6 inches of penetration is known as the seating drive. The sum of the impacts for the last 12 inches of penetration is the Standard Penetration Test Resistance or "N" value, blows per foot. For example, if blows = 6-8-9, "N" = 8+9 or 17.

OTHER NOTATIONS

Recovery % – length of recovered soil divided by length of sample attempted.

50/2" Impacts of hammer to cause sampler to penetrate the indicated number of inches

WR Sampler penetrated under the static loading of the weight of the drill rods

WH Sampler penetrated under the static loading the weight of the hammer and drill rods

HSA Hollow stem auger drilling method

FA Flight auger drilling method

RW Rotary wash drilling methods with drilling mud

AH Automatic hammer used for Standard Penetration Test sample

SH Safety hammer with rope and cathead used for Standard Penetration Test sample

GRAPHIC SYMBOLS

 ∇ Depth at which groundwater was encountered during drilling

■ Depth at which groundwater was measured after drilling

Standard Penetration Test Sample, ASTM D1586

3-inch diameter Shelby Tube Sample, ASTM D1587

G Sample grabbed from auger

NX Size rock core sample

UNIFIED SOIL CLASSIFICATION SYSTEM, (ASTM D-2487)

Мај	or Divi	sions	Gro Sym	-	Typical Names	La	boratory Classification (Criteria		
	on is	Clean gravels (Little or no fines)	G'	W	Well-graded gravels, gravel- sand mixtures, little or no fines	coarse-	$C_u = \frac{D_{60}}{D_{10}}$ greater than 4; $C_c = (\frac{D_{60}}{D_{10}})$	D_{30} between 1 and 3 $\times D_{60}$		
ize)	rse fracti	Clean (Little o	G	P	Poorly graded gravels, gravel- sand mixtures, little or no fines	e size), c	Not meeting all gradation re	quirements for GW		
Coarse-grained soils (More than half of materials is larger than No. 200 sieve size)	Gravels (More than half of coarse fraction is larger than No. 4 sieve size)	Gravels with fines (Appreciable amount of fines)	GM ^a	d	Silty gravels, gravel-sand-silt mixtures	el from grain-size curve. ion smaller than No. 200 sieve size), coar GW, GP, SW, SP GM, GC, SM, SC Borderline cases requiring dual symbols ^b	Atterberg limits below "A" line or P.1. less than 4	Above "A" line with P.1. between 4 and 7 are borderline		
red soils rger than N	(More th large	Gravels with (Appreciable a of fines)	G	u C	Clayey gravels, gravel-sand- clay mixtures	el from grain-size ion smaller than N GW, GP, SW, SP GM, GC, SM, SC Borderline cases r	Atterberg limits below "A" line with P.1. greater than 7	cases requiring use of dual symbols		
Coarse-grained soils aterials is larger tha	ion is	Clean sands ttle or no fines)	S	W	Well-graded sands, gravelly sands, little or no fines	nd gravel fr s (fraction s lows: GW GM. Borc	$C_u = \frac{D_{60}}{D_{10}} \text{ greater than 6; } C_c = (\underline{\Gamma}$	$\frac{D_{30})^2 \text{ between 1 and 3}}{x D_{60}}$		
C half of ma	ls coarse fract . 4 sieve siz	Clean sands (Little or no fines)	S	P	Poorly graded sands, gravelly sands, little or no fines	s of sand ar age of fines ified as foll	Not meeting all gradation requi	rements for SW		
(More than	Sands (More than half of coarse fraction is smaller than No. 4 sieve size)	Sands with fines (Appreciable amount of fines)	SM ^a	d u	Silty sands, sand-mix mixtures	Determine percentages of sand and gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-Grained soils are classified as follows: GW, GP, SW, SP More than 12 per cent GM, GC, SM, SC Borderline cases requiring dual symbols ^b	Atterberg limits about "A" line or P.I. less than 4	Limits plotting in hatched zone with P.I. between 4 and 7 are <i>borderline</i>		
	(Мол sı	Sands (Apprec	S	С	Clayey sands, sand-clay mixtures	Determ Depend Grainec Less tha More th	Atterberg limits about "A" line with P.I. greater than 7	cases requiring use of dual symbols		
	clays 0)		M	L	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity					
00 sieve size)	Silts and c	Silts and clays (Liquid limit less than 50)		L	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	60 For clas	ssification of fine-grained sails			
n No. 20			О	L	Organic silts and organic silty clays of low plasticity					
Fine-grained soils (More than half of materials is smaller than No. 20	ıys	reater	M	Н	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	then P	n of A - line tol of PI=4 to LL=25.5, VI=0.73 (LL-20) n of VII-line Lot LL=16 to PI=7 LI=0.9 (LL-8)			
Fine-gra materials is	Silts and clays	(Liquid inini greater than 50)	C	Н	Inorganic clays of medium to high plasticity, organic silts	10-	MH or OL	ОН		
ı half of	:	<u>n</u>)	O	Н	Organic clays of medium to high plasticity, organic silts	00 10	16 20 30 40 50 60 70 LIQUID LIMIT (LL)	80 90 100 110		
(More thar	Highly	soils	P	' t	Peat and other highly organic soils					
aD	Division of GM and SM groups into subdivisions of d and u are for roads and									

^aDivision of GM and SM groups into subdivisions of d and u are for roads and airfields only. Subdivision is based on Atterberg limits; suffix d used when L.L. is 26 or less and the P.1. is 6 or less; the suffix u used when L.L. is greater than 28.

^bBorderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.

T:\Geotechnical Group\Notes for Geotech Reports\Unified Soil Classifications System2.doc

ROCK CORE DESCRIPTIONS AND CRITERIA

Hardness

Very Soft - Easily indented with the thumb

Soft - Able to be scratched with a fingernail

Moderately Hard - Easily scratched with a knife; cannot be scratched with the fingernail

Hard - Difficult to scratch with a knife Very Hard - Cannot be scratched with a knife

Crystallinity (Soluble Rock Only)

Aphanitic - Crystals cannot be distinguished with the naked eye
Very Finely Crystalline - Crystals are barely discernable with the naked eye
Finely Crystalline - Crystals are easily discernable with the naked eye
Medium Crystalline - Crystals are medium size; up to 1/8" in diameter

Coarsely Crystalline - Crystals are 1/8" to 1/4" in diameter Very Coarsely Crystalline - Crystals are larger than 1/4" in diameter

Grain Size

 Very Fine Grained
 - Less than or equal to 0.0029" (#200 Sieve)

 Fine Grained
 - 0.0029" to 0.0165" (#200 to #40 Sieve)

 Medium Grained
 - 0.0165" to 0.07087" (#40 to #10 Sieve)

 Coarse Grained
 - Greater than 0.0787" (#10 Sieve)

Mass Bedding

Parting

- Less than 0.02 foot

Band

- 0.02 to 0.2 foot

Thin Bed

- 0.2 to 0.5 foot

Medium Bed

- 0.5 to 1.0 foot

Thick Bed

- 1.0 to 2.0 feet

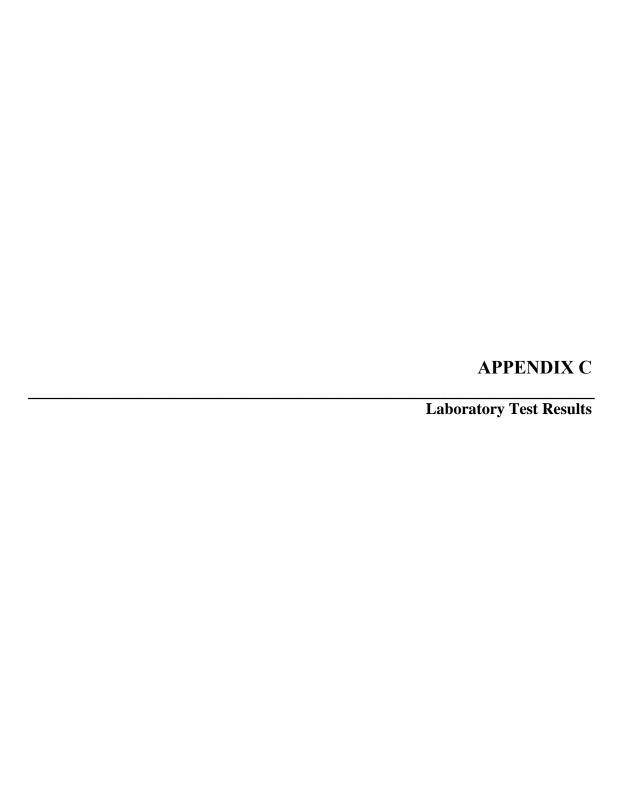
Massive

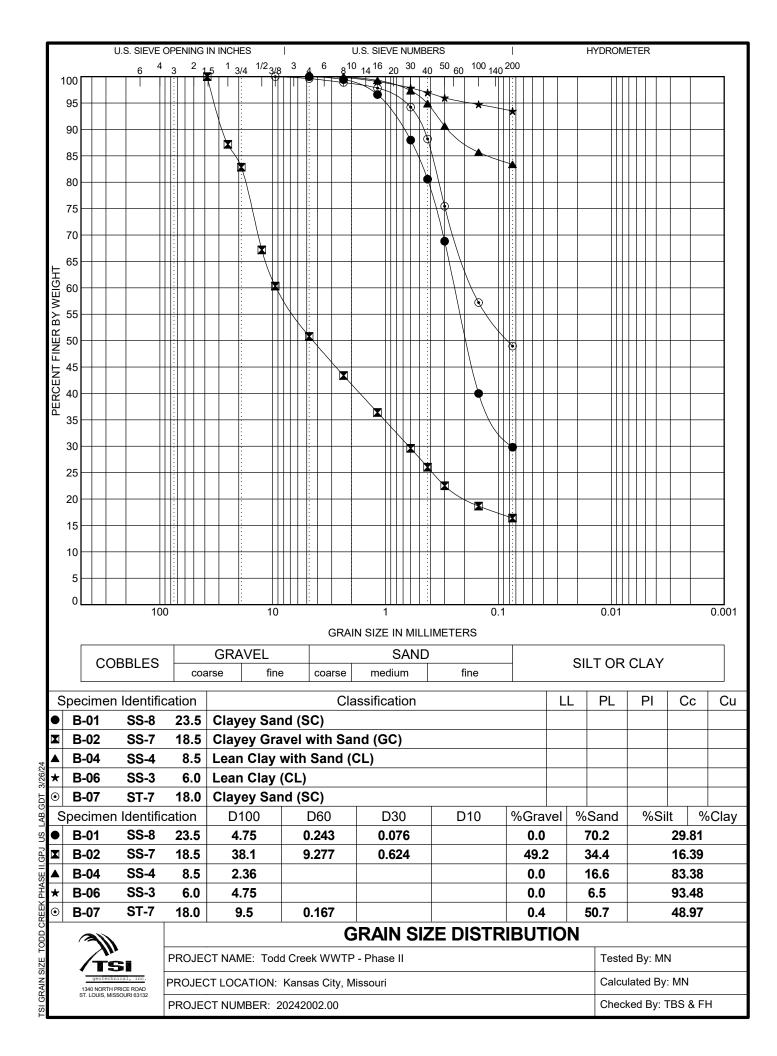
- Greater than 2.0 feet

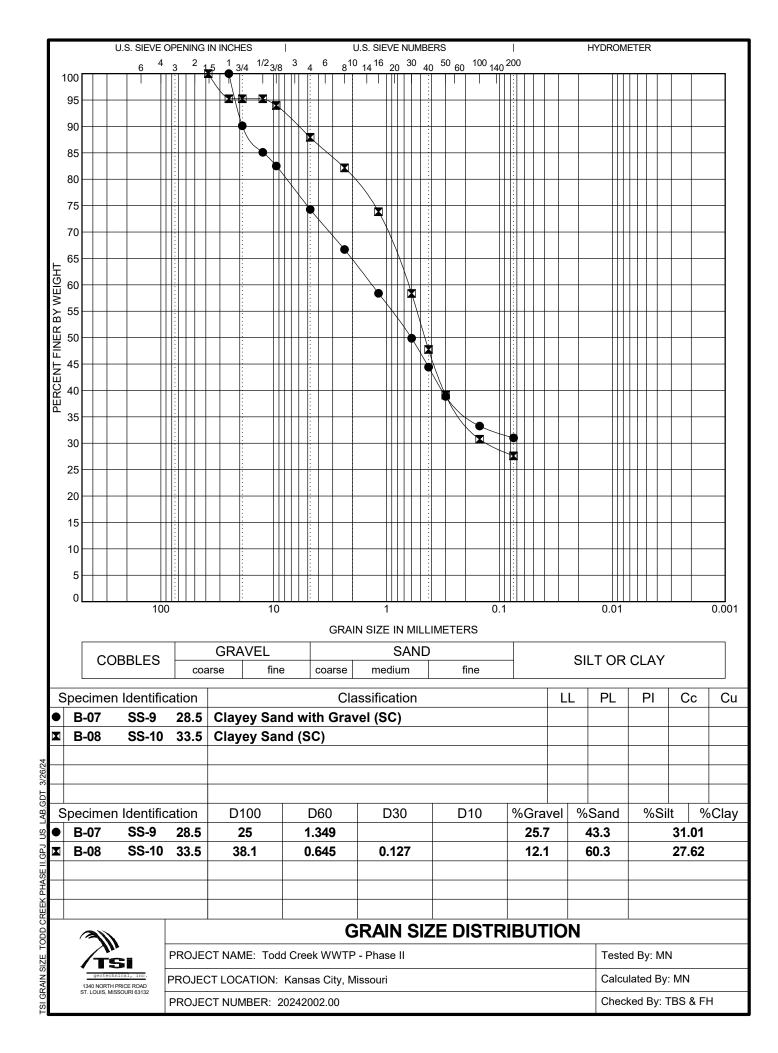
Weathering

Fresh - No visible signs of decomposition or discoloration Slightly Weathered - Slight discoloration inward from open fractures

Moderately Weathered - Discoloration throughout, slight loss of strength, texture intact
- Specimen can be broken by hand, texture indistinct, fabric intact


Completely Weathered - Specimen easily crumbled, minerals decomposed to soil


Voids


Dense - Usually not discernable with the naked eye

Pitted - Discernable to 1/4"

Vuggy - ¼" to diameter of the core Cavity - Larger than 6" in diameter

March 13, 2024

Anderson Borges TSi Geotechnical, Inc. 8248 NW 101st Terr. #5 Kansas City, MO 64153

RE: Project: TODD CREEK WWTP

Pace Project No.: 60448084

Dear Anderson Borges:

Enclosed are the analytical results for sample(s) received by the laboratory on February 29, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665

Alice Spiller

PM Lab Management

Enclosures

cc: Brooke Sidebottom, TSI Geotech

CERTIFICATIONS

Project: TODD CREEK WWTP

Pace Project No.: 60448084

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Inorganic Drinking Water Certification

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073

Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: TODD CREEK WWTP

Pace Project No.: 60448084

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60448084001	B-7, SS-2, 3.5-5.0 FT.	Solid	02/12/24 08:00	02/29/24 15:25

REPORT OF LABORATORY ANALYSIS

(913)599-5665

SAMPLE ANALYTE COUNT

Project: TODD CREEK WWTP

Pace Project No.: 60448084

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60448084001	B-7, SS-2, 3.5-5.0 FT.	ASTM D2974	DWC	1	PASI-K
		EPA 9045	KVI	1	PASI-K
		SM 2580B	SR1	1	PASI-K
		EPA 120.1 Resistivity	KVI	1	PASI-K
		EPA 9056	RKA	2	PASI-K

PASI-K = Pace Analytical Services - Kansas City

ANALYTICAL RESULTS

Project: TODD CREEK WWTP

Pace Project No.: 60448084

Date: 03/13/2024 04:53 PM

Sample: B-7, SS-2, 3.5-5.0 FT.	Lab ID: 604	48084001	Collected: 02/12/2	24 08:00	Received: 02	2/29/24 15:25 N	Matrix: Solid	
Results reported on a "dry weight	" basis and are ad	justed for p	ercent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	hod: ASTM	D2974					
	Pace Analytica	al Services -	Kansas City					
Percent Moisture	21.4	%	0.50	1		03/01/24 11:16		
9045 pH Soil	Analytical Met	hod: EPA 90	045					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	6.6	Std. Units	0.10	1		03/01/24 13:57	•	
Oxidation/Reduction Potential	Analytical Met	hod: SM 25	80B					
	Pace Analytica	al Services -	Kansas City					
Oxidation/Reduction Potential	244.2	mV	1.0	1		03/12/24 13:30)	H3
Resistivity	Analytical Met	hod: EPA 12	20.1 Resistivity					
	Pace Analytica	al Services -	Kansas City					
Resistivity	16900	ohms-cm	100	1		03/08/24 14:15		
9056 IC Anions	Analytical Met	hod: EPA 90	056 Preparation Met	nod: EP/	A 9056			
	Pace Analytica	al Services -	Kansas City					
Chloride	ND	mg/kg	121	10	03/05/24 07:55	03/05/24 13:19	16887-00-6	
Sulfate	ND	mg/kg	121	10	03/05/24 07:55	03/05/24 13:19	14808-79-8	

REPORT OF LABORATORY ANALYSIS

ASTM D2974

Project: TODD CREEK WWTP

Pace Project No.: 60448084

QC Batch: 885101

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Kansas City

Analysis Method:

Associated Lab Samples: 60448084001

METHOD BLANK: 3503556 Matrix: Solid

Associated Lab Samples: 60448084001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Percent Moisture % ND 0.50 03/01/24 11:16

SAMPLE DUPLICATE: 3503557

Date: 03/13/2024 04:53 PM

 Parameter
 Units
 60448093001 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Percent Moisture
 %
 22.0
 22.1
 1
 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: TODD CREEK WWTP

Pace Project No.: 60448084

QC Batch: 885137 Analysis Method: EPA 9045
QC Batch Method: EPA 9045 Analysis Description: 9045 pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60448084001

SAMPLE DUPLICATE: 3503726

Date: 03/13/2024 04:53 PM

60447975001 Dup Max Parameter Units Result RPD RPD Qualifiers Result 8.2 pH at 25 Degrees C 7.8 5 3 D6 Std. Units

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TODD CREEK WWTP

Pace Project No.: 60448084

QC Batch: 886204 Analysis Method: SM 2580B

QC Batch Method: SM 2580B Analysis Description: Oxidation/Reduction Potential

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60448084001

SAMPLE DUPLICATE: 3508142

Date: 03/13/2024 04:53 PM

Parameter Units Result RPD Max
Result RPD Qualifiers

Oxidation/Reduction Potential mV 230.5 227.0 H3,H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: TODD CREEK WWTP

Pace Project No.: 60448084

QC Batch: 885349 QC Batch Method: EPA 9056 Analysis Method:

EPA 9056

Analysis Description: 9056

9056 IC Anions

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60448084001

METHOD BLANK: 3504629

Matrix: Solid

Associated Lab Samples: 60448084001

Parameter

Blank Result Reporting Limit

Analyzed

Qualifiers

Chloride Sulfate Units mg/kg mg/kg

ND ND 99.8 03/05/24 08:07 99.8 03/05/24 08:07

LABORATORY CONTROL SAMPLE: 3504630

Parameter

Chloride

Sulfate

Chloride

Sulfate

Chloride

Sulfate

Units mg/kg

mg/kg

60447975001

Result

ND

ND

Spike Conc. 502

502

LCS Result LCS % Rec % Rec Limits 80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3504631 MS

Spike

Conc.

590

590

MSD

568

568

Spike

Conc.

ND

MS Result

540

3504632

726

823

MSD MS Result % Rec

602

601

108

MSD % Rec

89

80-120

% Rec Limits

80-120

80-120

c Max

RPD RPD Qual
19 15 R1
31 15 M1,R1

SAMPLE DUPLICATE: 3504633

Parameter

Date: 03/13/2024 04:53 PM

Parameter

Units

Units

mg/kg

mg/kg

Units Result mg/kg mg/kg

60447975002 Dup Result Result

______RPD

ND

Max RPD

5

110

123

Qualifiers

15 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TODD CREEK WWTP

Pace Project No.: 60448084

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/13/2024 04:53 PM

D6 The precision between the sam	ble and sample duplicate exceeded laboratory control limits.
----------------------------------	--

H3 Sample was received or analysis requested beyond the recognized method holding time.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TODD CREEK WWTP

Pace Project No.: 60448084

Date: 03/13/2024 04:53 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60448084001	B-7, SS-2, 3.5-5.0 FT.	ASTM D2974	885101		
60448084001	B-7, SS-2, 3.5-5.0 FT.	EPA 9045	885137		
60448084001	B-7, SS-2, 3.5-5.0 FT.	SM 2580B	886204		
60448084001	B-7, SS-2, 3.5-5.0 FT.	EPA 120.1 Resistivity	885903		
60448084001	B-7, SS-2, 3.5-5.0 FT.	EPA 9056	885349	EPA 9056	885543

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample Cor

WO#:60448084

,	AMALYTICAL SERVICES	Revision: 2	Effective D	hata: O	1/12/2	022	Is		11. 12:025	
				Jale. U.	1,12,2	UZZ		· · · · · · · · · · · · · · · ·		
Client Name:		Geotechnic	-							
Courier: FedE	Ex 🗆 UPS 🗈	□ VIA □ Cla	ay 🗆 PEX 🗆			Pace		Xroads □	Client 💪	Other □
Tracking #:			Pace Ship	ping La	bel Use			No 🌘		
Custody Seal on (•	ls intact	t: Yes [o ⊈o			
Packing Material:			ole Bags □		oam 🗆		None ¶	⊉ Otl	ner□ /	
Thermometer Use			Type of Ice:		Blue No		_		Date	initials of person
Cooler Temperatu	ıre (°C): A	s-read () · S (orr. Factor <u>— C</u>	0.3	Correc	ted <u>U</u>	. 6	→	examinin	g contents:
Temperature should I	be above freez	ing to 6°C				Ĭ			_/ ^-	
Chain of Custody p	present:		Ø?€	s 🗆 No	□n/a					
Chain of Custody r	elinquished:		ØYe	s 🗆 No	□n/a					
Samples arrived w	ithin holding t	time:	É Ye	s 🗆 No	□n/a					
Short Hold Time a	analyses (<7	2hr):	□Y€	s 🗆 No	□n/a					
Rush Turn Aroun	d Time requ	ested:	□Y€	s 🗆 No	□n/a					
Sufficient volume:			⊘ Y∈	s 🗆 No	□n/a					
Correct containers	used:		\(\sigma\)	s 🗆 No	□n/a					
Pace containers us	sed:		Q /e	s 🗆 No	□n/a					
Containers intact:			C Ø∕e	s 🗆 No	□n/a					
Unpreserved 5035	A / TX1005/1	006 soils frozen in 4	8hrs? □Ye	s 🗆 No	Ø N/A					
Filtered volume red	eived for diss	solved tests?	□Ye	s □No	⊘ N/A					
Sample labels mate	ch COC: Date	e / time / ID / analyse	s P Ye	s 🗆 No	□n/a					
Samples contain m	ultiple phase	s? Matrix: SL	, □Ye	s 🗆 No	□n/a					
Containers requirin	g pH preserv	ation in compliance?	Ye	s 🗆 No	Z N/A				es, lot #'s c	of preservative and the
		fide, NaOH>10 Cyanid				date/t	ime ad	idea.		
Exceptions: VOA, M Cyanide water sam		1PH, OK-DRO)	LOT#:							34
_ead acetate strip t	turns dark? (F	Record only)	□Ye	s □No						
Potassium iodide te	est strip turns	blue/purple? (Prese	rve) □Ye	s 🗆 No						
Ггір Blank present:			□Ye	s 🗆 No	⊉ ÎN/A	3				
Headspace in VOA	vials (>6mm	n):	□Ye	s 🗆 No	⊈ IN/A					
Samples from USD	A Regulated	Area: State:	□Ye	s 🗆 No	√ N/A					
Additional labels at	tached to 503	35A / TX1005 vials ir	n the field? □Ye	s 🗆 No	ØN/A					
Client Notification			opy COC to Client?	? Y	/ N	F	ield Da	ata Required	? Y /	N
Person Contacted:			Date/Time:							
Comments/ Resolut	Alama.									

Date:

Project Manager Review:

										the Dance of the land	and the same of	ant and an	DIST'S IFOC SPENINGS OF STANSAND	chain of custody	Submitting a sample via this chain of custody constitutes acknowledgment and appear of the Barrell Transfer of the Barrell Tra
Page: of		Date/Time:					A. Indiana	200			1000			1	
I Legis Just John		7					Nig nature 4	Received by/Company: Signature	2	8	Date/Time			are)	spoothed by/Company: (Signature)
		Date/Time:					A: (2/Eusgme)	Received by/Company: (Signature)	750	R	Date/Time			pre)	(authority) Shumbar Mc baseness
Defivered by: [] in-Person [] Courier	,	Offications:					y: (Signature)	Received by/Company: (Signature)			Cale/ion				
Tracking Number:	5251 00	Surgares .			۱۲۱	(K)	pany! (Signature)	Received by/Company	25	29 15	V.		Mount	1/1/2	(a)
Obil. Temp. ITC): Connected Temp. ITC): [] On Ica	Correction Factor (FQ) Dbs. To	Thermometer ID:	22	Coolers		1	1	C	Signature						and installed by House, and The same
	Customer Remarks / Special Conditions / Possible Hazards:	rks / Special Co	Rema	Custome		sorges	1	HOSHAGNA	Collected By: Printed Name					, i	PROTECTION OF THE PROPERTY OF
											_				and instance from E
			_	-											
			-	-											
				+											
				4							-				
			_	1											
			-												
11808 HAD	×	×					8:UDAM	212124	8:UUAM	2) 12) 24	G	, P		.o. o.o ii.	D-1, 00-2, 0.
Sample Comment		Re	PI	-	Result Units	1	Time	Oute		Date	8-	2		יי פרי	200
		edo	_	_	Residual Origina		Collected or Composite End	Collected or C	97.	Composite Start	Comp /	Mary		Customer Sample ID	0
	ide			ure	Hent (SED),	Water [SW], Sedin	Vapor NJ Surface	e (TSI, Bioassay (B)), h	IL Wipe (NP), Tass	1 PL Sol/Sold (SSL OI (C	WW/L Produc	J. Wastewater	Mark Codes (heart in Mark bushelow) Drinking Water (DM), Ground Water (DM), Wastewater (WM), Product (P), Sold Sold (SS), Cal (D1), Wibe (NP), Tissue (D3), Boussay (B), Waber (A), Surface Water (SW), Sedament (SSD), Sulde (SS), Cauld (SS), Execute (LL), Bloscold (BS), Other (OT)	ox below); Drinking Wa use (LL), Blosofid (BS	Matrix Codes (mem in Matrix bas below): Drinking Water (DW), Gro- Sludge (SL), Caulk (CK), Learnate (LL), Blosolid (BS), Other (OT)
2/40-)	Sul			Со	JNo	rb(e): [] Yes	Field Filtered (if applicable): [] Yes s:	Analysis:					Requested:		Tother
Use (tate			nter						Day Other	Day []3] 1 Day []:	[Same Day]1 Day]2 Day [3 Day Other		[] EQUIS
_	es		_	nt		s applicable:	DW PWSID # or WW Permit # as applicable:	DW PWSID # or			"	valrequired	well Rush (Pre-approval required);	velar []Level⊓	[] Level II Level II
AcctNum / Clent ID:] No	Reportable [] Yes [] No	Res			plicable:	, BCC.) as ap	m (DW, RCR)	Regulatory Program (DW, RCRA, etc.) as applicable:		Data Deliverables:
Proj. Mg:			_						sample(s):	County / State origin of sample(s):	0	ET	I IMI XCT JET	1 1 1	Time Zone Collected: [] AK
Thiopulate, (9) America Add, (10) March, (11) Other	Unalysis Requested	You								Quote #:	D				
4) HCL (5) NaDH. (6) Zn Acresto. (7) NaMicco (6)	Self Bandon Laboration Annual Self	A A CONTRACTOR								applicable):	D				
(B) TerraCore, (9) 90mL (10) Other					,				Soldon' com	Purchase Order # (If	9 -			(as applicable):	Site Collection info/Facility (D (as applicable):
(4) 125mL (5) 100mL (8) 40mL vail (7) Encore	Specify Container Size **	Specif							otech com	DDankins@tsign	77 - 1				Todd Creek WWTP
									ankins	Invoice to: Rhonda Rankins				002	Customer Project #: 20242002
ctions	Scan QR Code for instructions	學						com	m@tsigectech	Cr E-Mail: Bsidebottom@tsigeotech.com	0 8			1153	Kansas City, MO 64153
									123	Phone #: 816-519-5423	70			t t	Street Address:
								ut I	nderson Borge	Contact/Report To: Anderson Borges	0			technical	Company Name: TSi Geotechnical
		製物画	迎		≓ ——	*nt fields	Request	I-OF-CUSTODY Analytical Request Doci	JUSTODY ,	CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all referent fields					Pace
	TAB COCUMET AND WORKSTORY LOSS HER				_	,							הפכת בטכפווסון מתקשתטותם (כווע/טופות)	רכימנוס	raci

Page 1 of 1

DC#_Title: ENV-FRM-LENE-0001_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa Client TSi GCotechnical

SITE TOOK Creek WWTP

COC Line Item

= 12

10 ဖ 00

6 Ωı 4

Notes

Profile # 2140-1

Container Codes Matrix VG9H DG9H DG9Q VG9U DG9U DG9M DG9B BG1U AG1H AG1U AG2U AG3S AG4U AG5U JGFU WGKU WGDU BP1U BP2U BP3U BP1N BP3N BP3F BP3S BP3C BP3Z WPDU ZPLC Other

			٥.	- 3,		1	
3	10-1	Cidoo			Flastic		MISC.
DGAR	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	Ξ	Wipe/Swab
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N		SP5	120ml Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S		ZPI C	Zinine Ban
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH Zn Acetate	<u> </u>	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	ВРУС	500ml NAOH plastic	200	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500ml HNO3 plastic	= ;	Simma Can
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500ml H2SO4 plastic	1	Call
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH. Zn Acetate		
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	врзс	250mL NaOH plastic	- 1	Matrix
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	X	Water
всзн	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	S	Solid
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NA P	Non-aqueous Liquid
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	P	OL .
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
				BP4U	125mL unpreserved plastic	DW	Drinking Water
				BP4N	125mL HNO3 plastic		
				BP4S	125mL H2SO4 plastic		
Work Order Number	Number		J),	WPDU	16oz unpresserved plstic		
AACLY CIGGL	Validor.						

Work Order Number:

h8084489

Pace Analytical Services, LLC 2231 W. Altorfer Drive Peoria, IL 61615 (800)752-6651

March 13, 2024

Alice Spiller Pace Analytical - Lenexa 9608 Loiret Blvd Lenexa, KS 66219

RE: Pace Lenexa 60448084

Dear Alice Spiller:

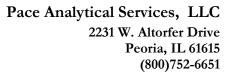
Please find enclosed the analytical results for the 1 sample(s) the laboratory received on 3/5/24 9:30 am and logged in under work order HC00539. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of Pace Analytical Services, LLC.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

Pace Analytical Services appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the General Manager, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lisa grant@pacelabs.com.

amen F. Holmos

Amy Holmes Project Manager (314) 595-7336 amy.holmes@pacelabs.com


SAMPLE RECEIPT CHECK LIST

Items not applicable will be marked as in compliance

Work Order

HC00539

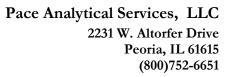
YES	Samples received within temperature compliance when applicable
YES	COC present upon sample receipt
NO	COC completed & legible
YES	Sampler name & signature present
YES	Unique sample IDs assigned
YES	Sample collection location recorded
YES	Date & time collected recorded on COC
NO	Relinquished by client signature on COC
YES	COC & labels match
YES	Sample labels are legible
YES	Appropriate bottle(s) received
YES	Sufficient sample volume received
YES	Sample containers received undamaged
NO	Zero headspace, <6 mm present in VOA vials
NO	Trip blank(s) received
NO	All non-field analyses received within holding times
NO	Short hold time analysis
NO	Current PDC COC submitted
NO	Case narrative provided

ANALYTICAL RESULTS

Sample: HC00539-01

Name: B-7, SS-2, 3.5-5.0 FT

Alias: 60448084001


Sampled: 02/12/24 08:00

Matrix:

Received: 03/05/24 09:30

Solid - Regular Sample

Parameter	Result	Unit	Qualifier	Dilution	MDL	MRL	Analyzed	Analyst	Method
General Chemistry - STL									
Sulfide	< 99.7	mg/kg	Ht	9.972078	64.3	99.7	03/13/24 15:20	MAS	EPA 9034

QC SAMPLE RESULTS

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B427853 - 04-No Prep WC Solid - EPA 9034									
Blank (B427853-BLK1)				Prepared &	Analyzed: 03/	13/24			
Sulfide	< 97.9	mg/kg							
LCS (B427853-BS1)				Prepared &	Analyzed: 03/	13/24			
Sulfide	189	mg/kg		267.4		71	60-115		
LCS Dup (B427853-BSD1)				Prepared &	Analyzed: 03/	13/24			
Sulfide	189	mg/kg		267.9		71	60-115	0.2	20

Pace Analytical Services, LLC 2231 W. Altorfer Drive **Peoria, IL 61615** (800)752-6651

NOTES

Specifications regarding method revisions, method modifications, and calculations used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

CHI - McHenry, IL - 4314-A W. Crystal Lake Road, McHenry, IL 60050

TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556

PIA - Peoria, IL - 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230

Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553

Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870)

Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPMO - Springfield, MO - 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program

STL - Hazelwood, MO - 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

Ht Sample received outside of holding time.

Certified by: Amy Holmes, Project Manager

Interna	Internal Transfer Chain of Custody	Chain c	of Custody	 						Baro
			Rush Multiplie	ltiplier X		State Of	State Of Origin: MO	[Tacc
				Samples Pre-Logged into eCOC	nto eCOC	Cert. Needed:	eded: Yes		200000000000000000000000000000000000000	3/15/2024
Workorde	Workorder: 60448084 M	Workorder Name:	d	TODD CREEK WWTP	0	Owner	Owner Received Date:	Z/Z9/Z0Z4 Result	Results requested by. Analysis	
Alice Spiller Pace Analytical Kansas 9608 Loiret Blvd. Lenexa, KS 66219	ical Kansas Blvd. 66219		Pace Analytic 944 Anglum Hazelwood, Phone (800)	Pace Analytical Hazelwood 944 Anglum Rd. Hazelwood, MO 63042 Phone (800)333-3278	wood					HCC0539
Phone (913)599-5665)599-5665						Suflide			÷
					Pre	Preserved Containers	ers			
Item Sample ID	9	Sample	Sample Collect Type Date/Time	Lab ID	Matrix Unpreserved					LAB USE ONLY
1 B-7, SS-2	B-7, SS-2, 3.5-5.0 FT.	PS	2/12/2024 08:00	60448084001	Solid 1		×			MOZ U
2										
£ 4		+								
. 2										
									Comments	
Transfers	Released By		Date/Time	Received By	7	Ď	T	KS sample location: RECEIVING	CEIVING	
1				\bigvee		7	35/24 925	Sample Snit needed		
2				+						
3				-		1	1	- 1		6
Cooler Tel	Cooler Temperature on Receipt 5-7	seipt 50	Sn2 D.	Custody Seal Y	or (N)	Receiv	Received on Ice (Y or	Z	Samples Intact	N Jor N

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Observed Temp (Deg C) 6.9 Corrected Temp (Deg C 5.7IR Gun # P7 Correction Factor (Deg C) 7-2 Delivery Method: FedEx UPS Walk-in USPS

Page 20 of 21 Page 6 of 7

Ship To: Pace Analytical Hazelwood 944 Anglum Rd. Hazelwood, MO 63042 Phone (800)333-3278

INTER_LABORATORY WORK ORDER # 60448084

(To be completed by sending lab)

Sending Project No:	60448084
Receiving Project No:	
Check Box for Consolidated Invoice:	
Date Prepared:	
REQUESTED COMPLETION DATE:	3/15/2024

		In 11 B 1 1 1 1 1 1 1 1	Alice Spiller
Sending Region	IR60-Kansas	Sending Project Mgr.	10.78000 011 V. 1
	S874	External Client	TSI Geotechnical
Receiving Region			STD REPORT
State of Sample Origin	MO	QC Deliverable	OTD ILL. O. I.

All questions should be addressed to sending project manager.

	WORK	REQUESTI	ED			
Method Description	Container Type	Quantity of containers	Preservative	Quantity of Samples	Acode	Acode Desc
Suffide	JGFU	1	Unpreserved	1	SI-21WET	SUB PASI WET
	mits (C),FR Only no			N ALSO		
FOR	ANALY HEAL WORK C	O				

Original sent to the receiving lab - Copy kept at the sending lab.

When work completed: Original sent to the ABM at the receiving laboratory. Copies are made to corporate as needed.

Uniaxial Compressive Strength Test of Rock Core

(*ASTM D7012-14*, *method C*)

Project: Todd Creek WWTP Phase II Boring Number: B-2 Date: 2/26/2024
Project Number: 20242002 Sample Number: R-1 Depth: 22.5-22.8

Visual Description: LIMESTONE

Specimen Weight	509.38	g
Diameter	1.862	inches
Length	4.220	inches
Volume	0.0066	ft ³

Wet unit weight	168.9	pcf
Length:Diameter Ratio	2.27	

Specimen Area (metric)	1756.776	mm^2
Specimen Area	2.723	in ²
Total Load on Specimen	46980	lbs
Unconfined Strength (qu)	17253	psi
Unconfined Strength (qu)	1242	tsf
Unconfined Strength (qu)	119	MPa

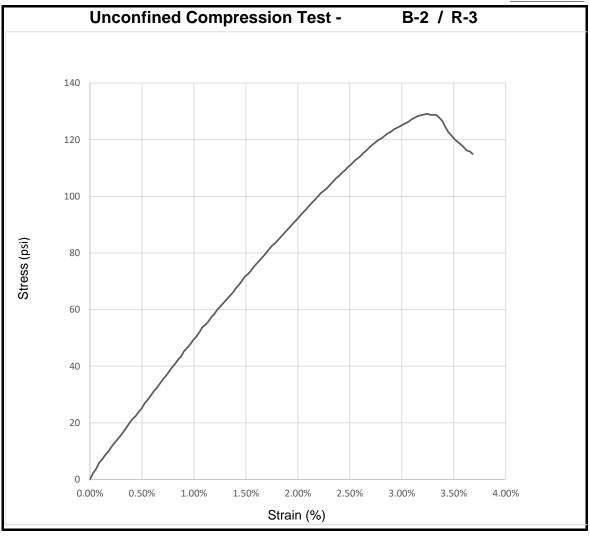
Before

<u>After</u>

Tested by: SLY
Calculated by: SLY
Checked by: TBS

Date: 2/26/2024 Date: 2/27/2024 Date: 4/1/2024

BORING NO.	B-2
SAMPLE NO.	R-3
SAMPLE DEPTH (ft)	34.0-34.3
RECOVERY (%)	100
VISUAL CLASS. (USCS)	SHALE

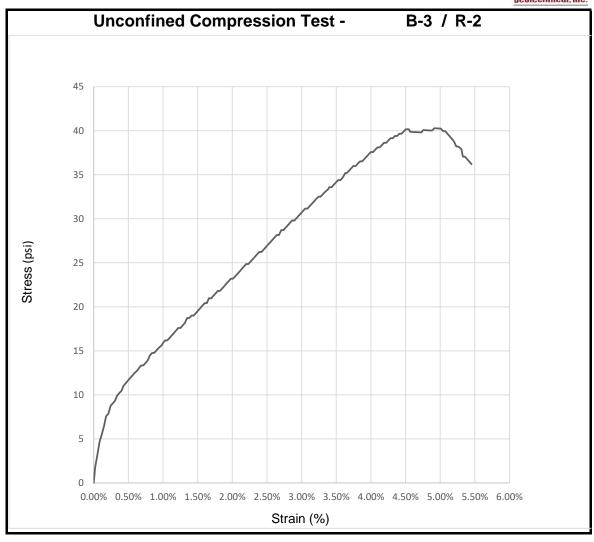

SPECIFICATIONS	
Unconfined Compression	ASTM D7012
VISUAL CLASS. (USCS)	SHALE

DENSITY & MOISTURE	
Wet unit weight (pcf)	143.5
Moisture Content (%)	9.8%
Dry unit weight (pcf)	130.7

STRENGTH	
Unconfined Strength qu (psi)	129.2
% Strain at qu	3.24

Tested by: SLY	2/26/2024
Calculated by: SLY	3/11/2024
Checked by: TBS	4/1/2024

BORING NO.	B-3
SAMPLE NO.	R-2
SAMPLE DEPTH (ft)	17.0-17.3
RECOVERY (%)	100
VISUAL CLASS. (USCS)	Clayey SHALE

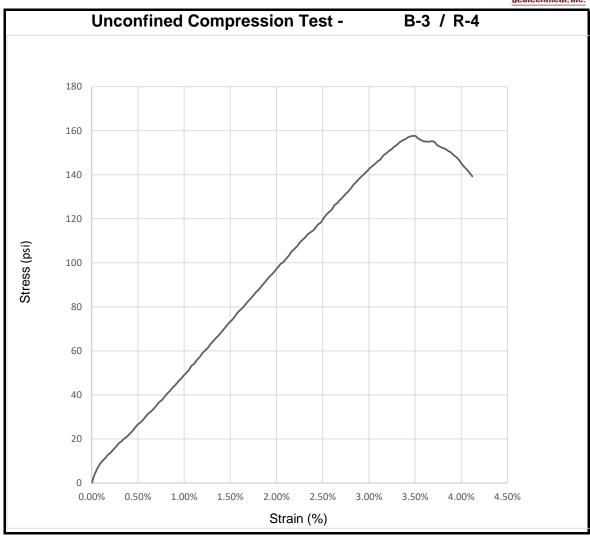

SPECIFICATIONS	
Unconfined Compression	ASTM D7012
VISUAL CLASS. (USCS)	SHALE

DENSITY & MOISTURE	
Wet unit weight (pcf)	139.5
Moisture Content (%)	11.7%
Dry unit weight (pcf)	125.0

STRENGTH	
Unconfined Strength qu (psi)	40.3
% Strain at qu	4.92

Tested by: SLY	2/26/2024
Calculated by: SLY	3/11/2024
Checked by: TBS	4/1/2024

BORING NO.	B-3
SAMPLE NO.	R-4
SAMPLE DEPTH (ft)	26.0-26.3
RECOVERY (%)	100
VISUAL CLASS. (USCS)	SHALE


SPECIFICATIONS	
Unconfined Compression	ASTM D7012
VISUAL CLASS. (USCS)	SHALE

DENSITY & MOISTURE	
Wet unit weight (pcf)	144.1
Moisture Content (%)	9.1%
Dry unit weight (pcf)	132.0

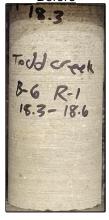
STRENGTH	
Unconfined Strength qu (psi)	157.7
% Strain at qu	3.48

Tested by: SLY	2/26/2024
Calculated by: SLY	3/11/2024
Checked by: TBS	4/1/2024

Uniaxial Compressive Strength Test of Rock Core

(*ASTM D7012-14*, *method C*)

Project:	Todd Creek	WWTP Phase II	Boring Number:	B-6	Date:	2/26/2024
Project N	umber:	20242002	Sample Number:	R-1	Depth:	18.3-18.6


Visual Description: LIMESTONE

Specimen Weight	510.22	g
Diameter	1.864	inches
Length	4.210	inches
Volume	0.0066	ft ³

Wet unit weight	169.2	pcf
Length:Diameter Ratio	2.26	

Specimen Area (metric)	1760.552	mm^2
Specimen Area	2.729	in ²
Total Load on Specimen	44710	lbs
Unconfined Strength (qu)	16385	psi
Unconfined Strength (qu)	1180	tsf
Unconfined Strength (qu)	113	MPa

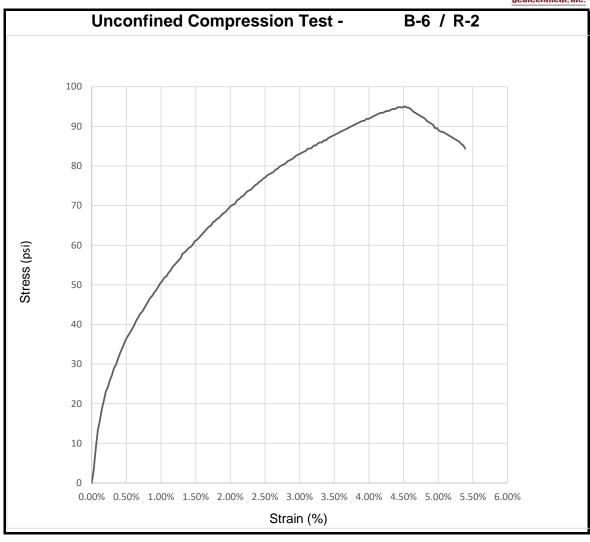
Before

<u>After</u>

Tested by: SLY
Calculated by: SLY
Checked by: TBS

Date: 2/26/2024 Date: 2/27/2024 Date: 4/1/2024

BORING NO.	B-6
SAMPLE NO.	R-2
SAMPLE DEPTH (ft)	22.9-23.2
RECOVERY (%)	100
VISUAL CLASS. (USCS)	SHALE


SPECIFICATIONS	
Unconfined Compression	ASTM D7012
VISUAL CLASS. (USCS)	SHALE

DENSITY & MOISTURE	
Wet unit weight (pcf)	139.9
Moisture Content (%)	13.3%
Dry unit weight (pcf)	123.4

STRENGTH	
Unconfined Strength qu (psi)	95.0
% Strain at qu	4.52

Tested by: SLY	2/26/2024
Calculated by: SLY	3/11/2024
Checked by: TBS	4/1/2024

Uniaxial Compressive Strength Test of Rock Core

(*ASTM D7012-14*, *method C*)

Project: Todd Creek WWTP Phase II Boring Number: B-7 Date: 3/7/2024
Project Number: 20242002 Sample Number: R-2 Depth: 30.5-30.8

Visual Description: LIMESTONE

Specimen Weight	509.00	g
Diameter	1.863	inches
Length	4.204	inches
Volume	0.0066	ft ³

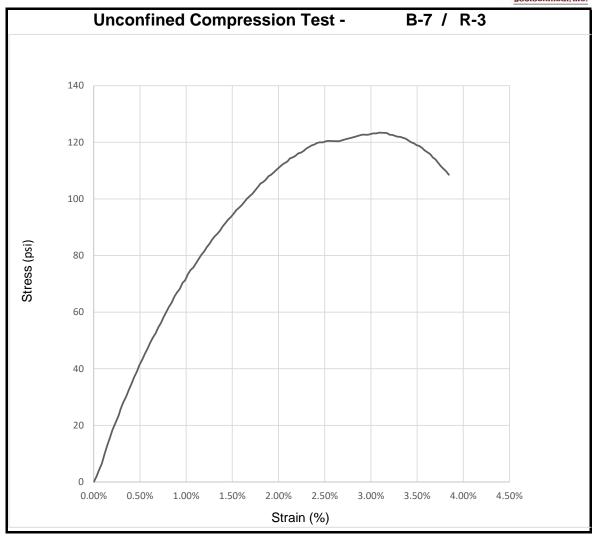
Wet unit weight	169.2	pcf
Length:Diameter Ratio	2.26	

Specimen Area (metric)	1758.663	mm^2
Specimen Area	2.726	in ²
Total Load on Specimen	52020	lbs
Unconfined Strength (qu)	19084	psi
Unconfined Strength (qu)	1374	tsf
Unconfined Strength (qu)	132	MPa

Tested by: SLY
Calculated by: SLY
Checked by: TBS

Date: 3/7/2024 Date: 3/11/2024 Date: 4/1/2024

BORING NO.	B-7
SAMPLE NO.	R-3
SAMPLE DEPTH (ft)	38.9-39.2
RECOVERY (%)	100
VISUAL CLASS. (USCS)	SHALE


SPECIFICATIONS	
Unconfined Compression	ASTM D7012
VISUAL CLASS. (USCS)	SHALE

DENSITY & MOISTURE	
Wet unit weight (pcf)	142.7
Moisture Content (%)	11.7%
Dry unit weight (pcf)	127.7

STRENGTH	
Unconfined Strength qu (psi)	123.4
% Strain at qu	3.09

Tested by: SLY	2/26/2024
Calculated by: SLY	3/11/2024
Checked by: TBS	4/1/2024

Uniaxial Compressive Strength Test of Rock Core

(*ASTM D7012-14*, *method C*)

Project: Todd Creek WWTP Phase II Boring Number: B-8 Date: 2/26/2024
Project Number: 20242002 Sample Number: R-2 Depth: 43.9-44.2

Visual Description: LIMESTONE

Specimen Weight	499.00	g
Diameter	1.863	inches
Length	4.153	inches
Volume	0.0066	ft ³

Wet unit weight	167.9	pcf
Length:Diameter Ratio	2.23	

Specimen Area (metric)	1758.663	mm^2
Specimen Area	2.726	in ²
Total Load on Specimen	41420	lbs
Unconfined Strength (qu)	15195	psi
Unconfined Strength (qu)	1094	tsf
Unconfined Strength (qu)	105	MPa

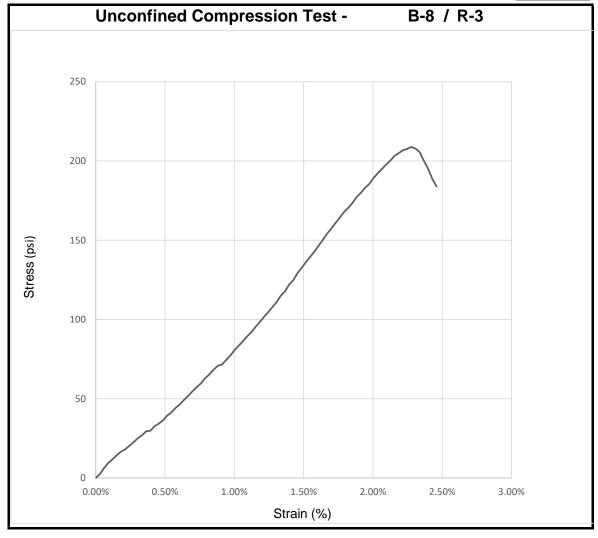
Toold Ck B-8 R-2 43.9-44.2

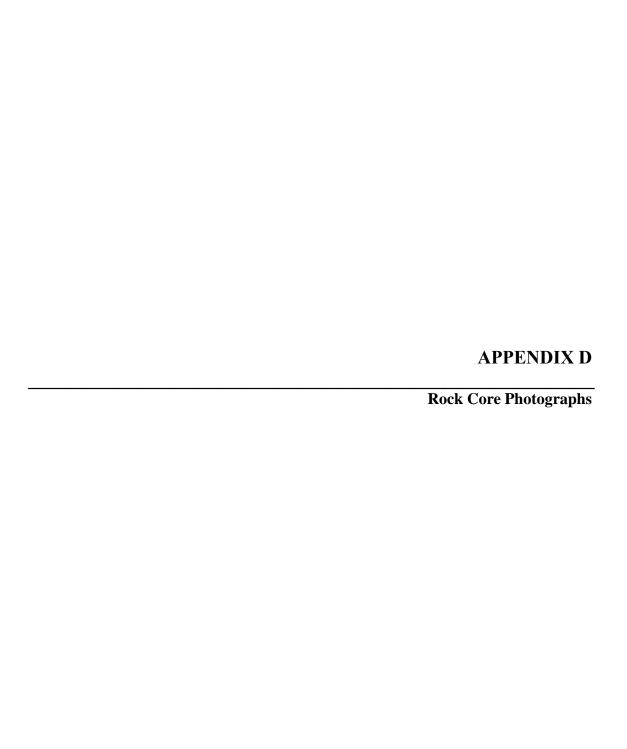
Before

Tested by: SLY
Calculated by: SLY
Checked by: TBS

Date: 2/26/2024 Date: 2/27/2024 Date: 4/1/2024

BORING NO.	B-8
SAMPLE NO.	R-3
SAMPLE DEPTH (ft)	48.8-49.1
RECOVERY (%)	100
VISUAL CLASS. (USCS)	SHALE


SPECIFICATIONS	
Unconfined Compression	ASTM D7012
VISUAL CLASS. (USCS)	SHALE


DENSITY & MOISTURE	
Wet unit weight (pcf)	152.3
Moisture Content (%)	8.3%
Dry unit weight (pcf)	140.7

STRENGTH	
Unconfined Strength qu (psi)	208.8
% Strain at qu	2.28

Tested by: SLY	2/26/2024
Calculated by: SLY	3/11/2024
Checked by: TBS	4/1/2024

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
1	20.5-25.0	70	26
2	25.0-30.0	100	55

BORING B-2

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
3	30.0-35.0	100	53
4	35.0-40.0	100	63

Run 5 Depth, Ft. 40.0-45.0

Recovery, % 100

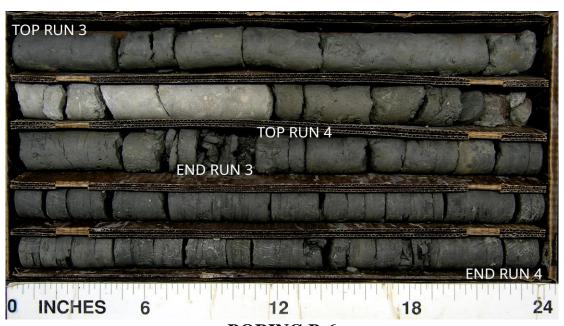
RQD, %

<u>Run</u>	Depth, Ft.	Recovery, %	<u>RQD, %</u>
1	12.0-15.0	31	0
2	15.0-20.0	100	90

BORING B-3

<u>Run</u>	<u>Depth, Ft.</u>	Recovery, %	<u>RQD, %</u>
3	20.0-25.0	100	58
4	25.0-30.0	100	78

Run 5 Depth, Ft. 30.0-35.0


Recovery, % 100

RQD, % 48

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
1	16.0-20.0	100	77
2	20.0-25.0	100	70

BORING B-6

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
3	25.0-30.0	97	38
4	30.0-35.0	98	15

Run 5 Depth, Ft. 35.0-40.0

Recovery, % 100

RQD, % 25

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
1	29.2-30.0	97	92
2	30.0-35.0	100	23

BORING B-7

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
3	35.0-40.0	100	48
4	40.0-45.0	100	44


Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
5	45.0-50.0	97	0
6	50.0-55.0	100	35

BORING B-7

<u>Run</u>	Depth, Ft.	Recovery, %	<u>RQD, %</u>
7	55.0-60.0	100	77
8	60.0-65.0	100	0

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
9	65.0-70.0	100	0
10	70.0-75.0	35	0

BORING B-7

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
11	75.0-80.0	72	45
12	80.0-85.0	77	35

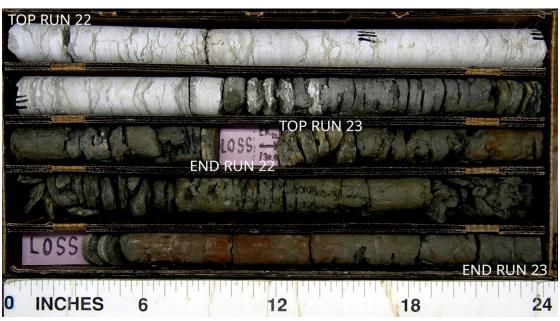
 Run
 Depth, Ft.
 Recovery, %
 RQD, %

 13
 85.0-90.0
 100
 100

BORING B-7

Run	Depth, Ft.	Recovery, %	RQD, %
14	90.0-95.0	99	91
15	95.0-100.0	97	75

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
16	100.0-105.0	100	97
17	105.0-110.0	100	80


BORING B-7

<u>Run</u>	<u>Depth, Ft.</u>	Recovery, %	<u>RQD, %</u>
18	110.0-112.0	83	21
19	112.0-115.0	100	61

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
20	115.0-120.0	94	40
21	120.0-125.0	100	95

BORING B-7

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
22	125.0-130.0	95	48
23	130.0-135.0	95	0

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
24	135.0-140.0	100	0
25	140.0-145.0	100	55

BORING B-7

 Run
 Depth, Ft.
 Recovery, %
 RQD, %

 26
 145.0-150.0
 100
 85

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
27	150.0-155.0	100	85
28	155.0-160.0	100	0

BORING B-7

<u>Depth, Ft.</u>	Recovery, %	<u>RQD, %</u>
160.0-163.3	58	0
163.3-165.0	100	100
165.0-170.0	100	8
	160.0-163.3 163.3-165.0	160.0-163.3 58 163.3-165.0 100

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
32	170.0-174.0	100	60
33	174.0-175.0	100	100
34	175.0-180.0	100	95

BORING B-7

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
35	180.0-185.0	100	93
36	185.0-190.0	100	100

<u>Run</u> 37 Depth, Ft. 190.0-195.0

Recovery, % 100

RQD, %

BORING B-7

<u>Run</u> 38

Depth, Ft. 195.0-200.0

Recovery, % 98

RQD, % 83

 Run
 Depth, Ft.
 Recovery, %
 RQD, %

 39
 200.0-205.0
 100
 100

BORING B-7

<u>Run</u>	<u>Depth, Ft.</u>	Recovery, %	<u>RQD, %</u>
40	205.0-210.0	100	100
41	210.0-215.0	98	97

Run	Depth, Ft.	Recovery, %	RQD, %
42	215.0-220.0	97	98
43	220.0-225.0	95	40

BORING B-7

<u>Run</u>	<u>Depth, Ft.</u>	Recovery, %	<u>RQD, %</u>
44	225.0-230.0	100	83
45	230.0-235.0	100	83

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
46	235.0-240.0	100	83
47	240.0-245.0	98	80

BORING B-7

<u>Run</u> <u>Depth, Ft.</u> <u>Recovery, %</u> <u>RQD, %</u> 48 245.0-250.0 100 70

Run	Depth, Ft.	Recovery, %	<u>RQD, %</u>
1	39.4-40.0	100	0
2	40.0-45.0	100	47

BORING B-8

<u>Run</u>	<u>Depth, Ft.</u>	Recovery, %	<u>RQD, %</u>
3	45.0-50.0	100	15
4	50.0-55.0	100	15

5

55.0-60.0

100